The biological activity of TNF-related apoptosis inducing ligand (TRAIL) was analyzed in primary human erythroblasts derived from mononuclear cells of blood donors, kept in culture in the presence of 20% foetal calf serum, growth factors (EPO, SCF, IL-3) and glucocorticoids (10-6 M dexamethasone, 10-6 M oestradiol) or under growth factor and serum starvation. In the presence of growth factors and serum, primary erythroblasts showed a differential expression of TRAIL-Receptors (Rs) at various degrees of maturation and responded to TRAIL treatment with a mild cytotoxicity. On the other hand, in the absence of serum and growth factors, TRAIL treatment unexpectedly up-regulated TRAIL-R4 decoy receptor and promoted erythroblast survival. The concomitant activation of NF-kB/IkB survival pathway was detected with Western blotting and immunofluorescence procedures and confirmed by experiments performed with SN50, a pharmacological inhibitor of the NF-kB/IkB pathway. Our study indicates that TRAIL has a twofold activity on erythroid lineages: it induces a mild erythroid cell cytotoxicity in the presence of serum and growth factors, while it promotes erythroid cell survival through the activation of the NF-kB/IkB pathway under starvation conditions.

TRAIL promotes a pro-survival signal in erythropoietin-deprived human erythroblasts through the activation of an NF-kB/IkBalpha pathway.

SANCILIO, SILVIA;DI GIACOMO, Viviana;RANA, Rosa Alba;CATALDI, Amelia;DI PIETRO, Roberta
2011-01-01

Abstract

The biological activity of TNF-related apoptosis inducing ligand (TRAIL) was analyzed in primary human erythroblasts derived from mononuclear cells of blood donors, kept in culture in the presence of 20% foetal calf serum, growth factors (EPO, SCF, IL-3) and glucocorticoids (10-6 M dexamethasone, 10-6 M oestradiol) or under growth factor and serum starvation. In the presence of growth factors and serum, primary erythroblasts showed a differential expression of TRAIL-Receptors (Rs) at various degrees of maturation and responded to TRAIL treatment with a mild cytotoxicity. On the other hand, in the absence of serum and growth factors, TRAIL treatment unexpectedly up-regulated TRAIL-R4 decoy receptor and promoted erythroblast survival. The concomitant activation of NF-kB/IkB survival pathway was detected with Western blotting and immunofluorescence procedures and confirmed by experiments performed with SN50, a pharmacological inhibitor of the NF-kB/IkB pathway. Our study indicates that TRAIL has a twofold activity on erythroid lineages: it induces a mild erythroid cell cytotoxicity in the presence of serum and growth factors, while it promotes erythroid cell survival through the activation of the NF-kB/IkB pathway under starvation conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/204537
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 22
social impact