We present the first polynomial-time algorithm to solve the maximum weight independent set problem for apple-free graphs, which is a common generalization of several important classes where the problem can be solved efficiently, such as claw-free graphs, chordal graphs, and cographs. Our solution is based on a combination of two algorithmic techniques (modular decomposition and decomposition by clique separators) and a deep combinatorial analysis of the structure of apple-free graphs. Our algorithm is robust in the sense that it does not require the input graph $G$ to be apple-free; the algorithm either finds an independent set of maximum weight in $G$ or reports that $G$ is not apple-free.
Independent sets of maximum weight in apple-free graphs
MOSCA, Raffaele
2010-01-01
Abstract
We present the first polynomial-time algorithm to solve the maximum weight independent set problem for apple-free graphs, which is a common generalization of several important classes where the problem can be solved efficiently, such as claw-free graphs, chordal graphs, and cographs. Our solution is based on a combination of two algorithmic techniques (modular decomposition and decomposition by clique separators) and a deep combinatorial analysis of the structure of apple-free graphs. Our algorithm is robust in the sense that it does not require the input graph $G$ to be apple-free; the algorithm either finds an independent set of maximum weight in $G$ or reports that $G$ is not apple-free.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.