We show that all-electron relativistic four-component Dirac-Kohn-Sham (DKS) computations, using G-spinor basis sets and state-of-the-art density fitting algorithms, can be efficiently parallelized and applied to large molecular systems, including large clusters of heavy atoms. The performance of the parallel implementation of the DKS module of the program BERTHA is illustrated and analyzed by some test calculations on several gold clusters up to Au-32, showing that calculations with more than 25 000 basis functions (i.e., DKS matrices on the order of 10 GB) are now feasible. As a first application of this novel implementation, we investigate the interaction of the atom Hg with the Au-20 cluster.

An Efficient Parallel All-Electron Four-Component Dirac-Kohn-Sham Program Using a Distributed Matrix Approach

STORCHI, LORIANO;
2010-01-01

Abstract

We show that all-electron relativistic four-component Dirac-Kohn-Sham (DKS) computations, using G-spinor basis sets and state-of-the-art density fitting algorithms, can be efficiently parallelized and applied to large molecular systems, including large clusters of heavy atoms. The performance of the parallel implementation of the DKS module of the program BERTHA is illustrated and analyzed by some test calculations on several gold clusters up to Au-32, showing that calculations with more than 25 000 basis functions (i.e., DKS matrices on the order of 10 GB) are now feasible. As a first application of this novel implementation, we investigate the interaction of the atom Hg with the Au-20 cluster.
File in questo prodotto:
File Dimensione Formato  
2010_jctc_6_384-394.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/225432
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact