A spatial time series framework is used for stochastic modelling of daily average Sulphur Dioxide (SO2) levels in the Milan district. Within a spatiotemporal Kalman filter algorithm, stochastic conditional simulation is performed to obtain spatial and temporal predictions of the observed process. Unlike other recent space-time Kalman filters, the inclusion of a point source trend model also allows the development of a spatio-temporal state-space model that achieves dimension reduction in the analysis of large data set.

Conditional Simulation in Dynamic Linear Models for Spatial and Temporal Predictions of Diffusive Phenomena

DI BATTISTA, Tonio;FONTANELLA, Lara;IPPOLITI, Luigi
2003-01-01

Abstract

A spatial time series framework is used for stochastic modelling of daily average Sulphur Dioxide (SO2) levels in the Milan district. Within a spatiotemporal Kalman filter algorithm, stochastic conditional simulation is performed to obtain spatial and temporal predictions of the observed process. Unlike other recent space-time Kalman filters, the inclusion of a point source trend model also allows the development of a spatio-temporal state-space model that achieves dimension reduction in the analysis of large data set.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/237940
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact