Mutations in the insulin gene can impair the bioactivity of the insulin molecule. Previously, two classes of mutations have been identified: 1) those that impair posttranslational processing of proinsulin to insulin, and 2) those that alter the structure of the insulin molecule, thereby reducing the affinity of the molecule for the insulin receptor. We have investigated two apparently unrelated patients, both of which have mutations that inhibit the conversion of proinsulin to insulin. By directly sequencing genomic DNA amplified by polymerase chain reaction, we have demonstrated that both patients are heterozygous for the same point mutation converting codon 65 from an arginine (CGT) to a histidine (CAT) codon. Because Arg65 is one of the two dibasic amino acids at the site of proteolytic cleavage between the insulin A-chain and C-peptide, this mutation explains the impairment in the cleavage of proinsulin to insulin. Interestingly, the same His65 mutation has been identified in the insulin gene of a Japanese kindred with familial hyperproinsulinemia. Thus, this mutation has occurred in three apparently unrelated kindreds from two different racial groups. This observation is consistent with the hypothesis that the dinucleotide sequence CpG, the first two nucleotides in the arginine (CGT) codon, is a "hot spot" for mutations

Two unrelated patients with familial hyperproinsulinemia due to a mutation substituting histidine for arginine at position 65 in the proinsulin molecule: identification of the mutation by direct sequencing of genomic deoxyribonucleic acid amplified by polymerase chain reaction

CAMA, Alessandro;
1990-01-01

Abstract

Mutations in the insulin gene can impair the bioactivity of the insulin molecule. Previously, two classes of mutations have been identified: 1) those that impair posttranslational processing of proinsulin to insulin, and 2) those that alter the structure of the insulin molecule, thereby reducing the affinity of the molecule for the insulin receptor. We have investigated two apparently unrelated patients, both of which have mutations that inhibit the conversion of proinsulin to insulin. By directly sequencing genomic DNA amplified by polymerase chain reaction, we have demonstrated that both patients are heterozygous for the same point mutation converting codon 65 from an arginine (CGT) to a histidine (CAT) codon. Because Arg65 is one of the two dibasic amino acids at the site of proteolytic cleavage between the insulin A-chain and C-peptide, this mutation explains the impairment in the cleavage of proinsulin to insulin. Interestingly, the same His65 mutation has been identified in the insulin gene of a Japanese kindred with familial hyperproinsulinemia. Thus, this mutation has occurred in three apparently unrelated kindreds from two different racial groups. This observation is consistent with the hypothesis that the dinucleotide sequence CpG, the first two nucleotides in the arginine (CGT) codon, is a "hot spot" for mutations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/268130
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 33
social impact