Circulating endothelial cells (CEC) and endothelial microparticles (EMP) are emerging as markers of endothelial repair and activation/apoptosis. Although significant changes in the number of CEC and EMP in pathological conditions have been reported, their reliable identification and quantification still remain a technical challenge. Here, we present a novel methodology for the identification and quantitation of CEC and EMP based on multicolor flow cytometry. Using a lyse/no wash protocol, we observed that in 50 μl of peripheral blood, the large majority of events expressing an endothelial phenotype (CD45-/CD146+/CD34+) are due to non-nucleated particles (DRAQ5-) carrying mitochondrial activity (MitoTracker+) and, therefore, classified as EMP. We enumerated circulating EMP by single platform absolute count in a lyse/no wash four-color flow-cytometric procedure, which allowed the distinction, within the whole endothelial compartment, of EMP derived from endothelial progenitors (CD45-/CD146+/CD34+/CD117+) and from mature endothelial cells (CD45-/CD146+/CD34+/CD117-). A significant increase in both subsets was observed in patients with diabetes mellitus. Thus, this simple and highly reproducible method may be useful for monitoring endothelial dysfunction in clinical settings.

A novel flow cytometric approach to distinguish circulating endothelial cells from endothelial microparticles: relevance for the evaluation of endothelial dysfunction

LANUTI, PAOLA;SANTILLI, FRANCESCA;MARCHISIO, Marco;PIERDOMENICO, Laura;VITACOLONNA, Ester;SANTAVENERE, Eugenio;DAVI', Giovanni;ROMANO, Mario;MISCIA, Sebastiano
2012-01-01

Abstract

Circulating endothelial cells (CEC) and endothelial microparticles (EMP) are emerging as markers of endothelial repair and activation/apoptosis. Although significant changes in the number of CEC and EMP in pathological conditions have been reported, their reliable identification and quantification still remain a technical challenge. Here, we present a novel methodology for the identification and quantitation of CEC and EMP based on multicolor flow cytometry. Using a lyse/no wash protocol, we observed that in 50 μl of peripheral blood, the large majority of events expressing an endothelial phenotype (CD45-/CD146+/CD34+) are due to non-nucleated particles (DRAQ5-) carrying mitochondrial activity (MitoTracker+) and, therefore, classified as EMP. We enumerated circulating EMP by single platform absolute count in a lyse/no wash four-color flow-cytometric procedure, which allowed the distinction, within the whole endothelial compartment, of EMP derived from endothelial progenitors (CD45-/CD146+/CD34+/CD117+) and from mature endothelial cells (CD45-/CD146+/CD34+/CD117-). A significant increase in both subsets was observed in patients with diabetes mellitus. Thus, this simple and highly reproducible method may be useful for monitoring endothelial dysfunction in clinical settings.
File in questo prodotto:
File Dimensione Formato  
2012 JIM.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 681.08 kB
Formato Adobe PDF
681.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/270690
Citazioni
  • ???jsp.display-item.citation.pmc??? 27
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 51
social impact