Cationic liposomes are studied mainly as nonviral nucleic acid delivery systems and to a lesser extent as carriers/adjuvants of vaccines and as low-molecular-weight drug carriers. It is well established that the performance and the biological activity of liposomes in general are strongly related to their physicochemical properties. We investigated the thermotropic behavior and the size distribution of mixed cationic liposomes formulated with different percentages of 1.2 dimyristoyl-sn-glycero-3-phosphatidylcholine and one of four cationic amphiphiles characterized by a pyrrolidinium headgroup with the aim of achieving a better understanding of how the molecular structure of the cationic amphiphile and its mole percentage affect the physicochemical properties of the liposomes. Multilamellar vesicles and large unilamellar vesicles were studied by differential scanning calorimetry and turbidity, respectively, to characterize the thermotropic behavior and lipid phase, whereas dynamic light scattering was used to determine size distribution. This study shows that subtle modifications in the cationic amphiphile's molecular structure and in liposome composition may have dramatic effects on the organization of the liposome bilayer and hence on the morphological and physicochemical features of the liposomes, thus being highly relevant to the biological features investigated previously. (C) 2010 Elsevier Inc. All rights reserved.

Influence of lipid composition on the thermotropic behavior and size distribution of mixed cationic liposomes

DI PROFIO, Pietro;
2011-01-01

Abstract

Cationic liposomes are studied mainly as nonviral nucleic acid delivery systems and to a lesser extent as carriers/adjuvants of vaccines and as low-molecular-weight drug carriers. It is well established that the performance and the biological activity of liposomes in general are strongly related to their physicochemical properties. We investigated the thermotropic behavior and the size distribution of mixed cationic liposomes formulated with different percentages of 1.2 dimyristoyl-sn-glycero-3-phosphatidylcholine and one of four cationic amphiphiles characterized by a pyrrolidinium headgroup with the aim of achieving a better understanding of how the molecular structure of the cationic amphiphile and its mole percentage affect the physicochemical properties of the liposomes. Multilamellar vesicles and large unilamellar vesicles were studied by differential scanning calorimetry and turbidity, respectively, to characterize the thermotropic behavior and lipid phase, whereas dynamic light scattering was used to determine size distribution. This study shows that subtle modifications in the cationic amphiphile's molecular structure and in liposome composition may have dramatic effects on the organization of the liposome bilayer and hence on the morphological and physicochemical features of the liposomes, thus being highly relevant to the biological features investigated previously. (C) 2010 Elsevier Inc. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/271191
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 35
social impact