Mitochondria mediate dual metabolic and Ca2+ shuttling activities. While the former is required for Ca2+ signalling linked to insulin secretion, the role of the latter in β cell function has not been well understood, primarily because the molecular identity of the mitochondrial Ca2+ transporters were elusive and the selectivity of their inhibitors was questionable. This study focuses on NCLX, the recently discovered mitochondrial Na+/Ca2+ exchanger that is linked to Ca2+ signalling in MIN6 and primary β cells. Suppression either of NCLX expression, using a siRNA construct (siNCLX) or of its activity, by a dominant negative construct (dnNCLX), enhanced mitochondrial Ca2+ influx and blocked efflux induced by glucose or by cell depolarization. In addition, NCLX regulated basal, but not glucose-dependent changes, in metabolic rate, mitochondrial membrane potential and mitochondrial resting Ca2+. Importantly, NCLX controlled the rate and amplitude of cytosolic Ca2+ changes induced by depolarization or high glucose, indicating that NCLX is a critical and rate limiting component in the cross talk between mitochondrial and plasma membrane Ca2+ signalling. Finally, knockdown of NCLX expression was followed by a delay in glucose-dependent insulin secretion. These findings suggest that the mitochondrial Na+/Ca2+ exchanger, NCLX, shapes glucose-dependent mitochondrial and cytosolic Ca2+ signals thereby regulating the temporal pattern of insulin secretion in β cells.

The mitochondrial na(+)/ca(2+) exchanger upregulates glucose dependent ca(2+) signalling linked to insulin secretion

SENSI, Stefano;
2012-01-01

Abstract

Mitochondria mediate dual metabolic and Ca2+ shuttling activities. While the former is required for Ca2+ signalling linked to insulin secretion, the role of the latter in β cell function has not been well understood, primarily because the molecular identity of the mitochondrial Ca2+ transporters were elusive and the selectivity of their inhibitors was questionable. This study focuses on NCLX, the recently discovered mitochondrial Na+/Ca2+ exchanger that is linked to Ca2+ signalling in MIN6 and primary β cells. Suppression either of NCLX expression, using a siRNA construct (siNCLX) or of its activity, by a dominant negative construct (dnNCLX), enhanced mitochondrial Ca2+ influx and blocked efflux induced by glucose or by cell depolarization. In addition, NCLX regulated basal, but not glucose-dependent changes, in metabolic rate, mitochondrial membrane potential and mitochondrial resting Ca2+. Importantly, NCLX controlled the rate and amplitude of cytosolic Ca2+ changes induced by depolarization or high glucose, indicating that NCLX is a critical and rate limiting component in the cross talk between mitochondrial and plasma membrane Ca2+ signalling. Finally, knockdown of NCLX expression was followed by a delay in glucose-dependent insulin secretion. These findings suggest that the mitochondrial Na+/Ca2+ exchanger, NCLX, shapes glucose-dependent mitochondrial and cytosolic Ca2+ signals thereby regulating the temporal pattern of insulin secretion in β cells.
File in questo prodotto:
File Dimensione Formato  
journal.pone.0046649.pdf

accesso aperto

Tipologia: Documento in Post-print
Dimensione 690.75 kB
Formato Adobe PDF
690.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/330089
Citazioni
  • ???jsp.display-item.citation.pmc??? 27
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 61
social impact