In this study we applied the General Linear Convolution Model to fast optical signals (FOS). We modeled the Impulse Response Function (IRF) as a rectangular function lasting 30. ms, with variable time delay with respect to the stimulus onset. Simulated data confirmed the feasibility of this approach and its capability of detecting simulated activations in case of very unfavorable Signal to Noise Ratio (SNR), providing better results than the grand average method. The model was tested in a cohort of 10 healthy volunteers who underwent to hemi-field visual stimulation. Experimental data quantified the IRF time delay at 80-100. ms after the stimulus onset, in agreement with classical visual evoked potential literature and previous optical imaging studies based on grand average approach and a larger number of trails. FOS confirmed the expected contralateral activation in the occipital region. Correlational analysis between hemodynamic intensity signal, phase and intensity FOS supports diffusive rather than optical absorption changes associated with neuronal activity in the activated cortical volume. Our study provides a feasible method for detecting fast cortical activations by means of FOS.

Fast optical signal in visual cortex: Improving detection by General Linear Convolution Model

CHIARELLI, ANTONIO MARIA;ROMANI, Gian Luca;MERLA, Arcangelo
2013-01-01

Abstract

In this study we applied the General Linear Convolution Model to fast optical signals (FOS). We modeled the Impulse Response Function (IRF) as a rectangular function lasting 30. ms, with variable time delay with respect to the stimulus onset. Simulated data confirmed the feasibility of this approach and its capability of detecting simulated activations in case of very unfavorable Signal to Noise Ratio (SNR), providing better results than the grand average method. The model was tested in a cohort of 10 healthy volunteers who underwent to hemi-field visual stimulation. Experimental data quantified the IRF time delay at 80-100. ms after the stimulus onset, in agreement with classical visual evoked potential literature and previous optical imaging studies based on grand average approach and a larger number of trails. FOS confirmed the expected contralateral activation in the occipital region. Correlational analysis between hemodynamic intensity signal, phase and intensity FOS supports diffusive rather than optical absorption changes associated with neuronal activity in the activated cortical volume. Our study provides a feasible method for detecting fast cortical activations by means of FOS.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/359883
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact