Progress in lithium battery technology may be achieved by passing from a conventional liquid electrolyte structure to a solid-state, polymer configuration. In this prospect, great R&D effort has been devoted to the development of suitable lithium conducting polymer electrolytes. The most promising results have been obtained with systems based on blends between poly(ethylene oxide) and lithium salts. In this work we show that the transport and interfacial properties of these electrolytes may be greatly enhanced by the dispersion of a ceramic filter having an unique surface state condition. The results, in addition to their practical reflection in the lithium polymer electrolyte battery technology, also provide a valid support to the model which ascribes the enhancement of the transport properties of ceramic-added composites to the specific Lewis acid-base interactions between the ceramic surface states and both the lithium salt anion and the PEO-chains. (c) 2006 Elsevier B.V. All rights reserved.

Advanced, high-performance composite polymer electrolytes for lithium batteries

CROCE, Fausto;
2006-01-01

Abstract

Progress in lithium battery technology may be achieved by passing from a conventional liquid electrolyte structure to a solid-state, polymer configuration. In this prospect, great R&D effort has been devoted to the development of suitable lithium conducting polymer electrolytes. The most promising results have been obtained with systems based on blends between poly(ethylene oxide) and lithium salts. In this work we show that the transport and interfacial properties of these electrolytes may be greatly enhanced by the dispersion of a ceramic filter having an unique surface state condition. The results, in addition to their practical reflection in the lithium polymer electrolyte battery technology, also provide a valid support to the model which ascribes the enhancement of the transport properties of ceramic-added composites to the specific Lewis acid-base interactions between the ceramic surface states and both the lithium salt anion and the PEO-chains. (c) 2006 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/429884
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 101
  • ???jsp.display-item.citation.isi??? 92
social impact