Human amniotic fluid mesenchymal stem cells (hAFMSCs) are promising for therapeutic applications in bone damage. Calcium sensing receptor (CaSR), a G protein-coupled receptor, plays a physiological role in the regulation of bone metabolism. Thus, the bone CaSR could be targeted by calcimimetic agonists, which may be potentially helpful in treating bone diseases. The aim of our study was to characterize CaSR expression in hAFMSCs and to assess the activity of calcimimetic R-568 during in vitro osteogenesis. Using western blotting, immunofluorescence, and flow cytometry, we consistently observed constitutive CaSR in osteo-differentiating hAFMSCs. Notably, both R-568 and calcium significantly enhanced hAFMSC osteogenic differentiation after exposure to osteogenic medium. To provide further evidence of the involvement of CaSR in osteogenesis, we correlated its expression with that of established osteogenic markers, that is, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteopontin (OPN), and novel, not yet completely defined regulators of osteogenesis. Among these are β-catenin and Slug, which are mediators of Wnt signaling, and nuclear factor of activated T cells c1 (NFATc1), which plays a critical role in calcium/calcineurin signaling. Taken together, our results demonstrate that CaSR is expressed in hAFMSCs, positively correlates with osteogenic markers, and is activated by R-568. Notably, downregulation of CaSR by RNA interference supports the conclusion that CaSR activation plays a central role in hAFMSC osteogenesis. Thus, this study provides significant information on the mechanisms of hAFMSC osteogenesis, which could provide additional molecular basis for the use of calcimimetics in bone regenerative medicine.

Calcium Sensing Receptor activation by calcimimetic R-568 in human amniotic fluid mesenchymal stem cells: Correlation with osteogenic differentiation.

PIPINO, CATERINA;DI TOMO, PAMELA;Mandatori D;CIANCI, ELEONORA;LANUTI, PAOLA;PIERDOMENICO, Laura;ANTONUCCI, IVANA;SIROLLI, Vittorio;BONOMINI, Mario;ROMANO, Mario;MARCHISIO, Marco;PANDOLFI, Assunta
2014-01-01

Abstract

Human amniotic fluid mesenchymal stem cells (hAFMSCs) are promising for therapeutic applications in bone damage. Calcium sensing receptor (CaSR), a G protein-coupled receptor, plays a physiological role in the regulation of bone metabolism. Thus, the bone CaSR could be targeted by calcimimetic agonists, which may be potentially helpful in treating bone diseases. The aim of our study was to characterize CaSR expression in hAFMSCs and to assess the activity of calcimimetic R-568 during in vitro osteogenesis. Using western blotting, immunofluorescence, and flow cytometry, we consistently observed constitutive CaSR in osteo-differentiating hAFMSCs. Notably, both R-568 and calcium significantly enhanced hAFMSC osteogenic differentiation after exposure to osteogenic medium. To provide further evidence of the involvement of CaSR in osteogenesis, we correlated its expression with that of established osteogenic markers, that is, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteopontin (OPN), and novel, not yet completely defined regulators of osteogenesis. Among these are β-catenin and Slug, which are mediators of Wnt signaling, and nuclear factor of activated T cells c1 (NFATc1), which plays a critical role in calcium/calcineurin signaling. Taken together, our results demonstrate that CaSR is expressed in hAFMSCs, positively correlates with osteogenic markers, and is activated by R-568. Notably, downregulation of CaSR by RNA interference supports the conclusion that CaSR activation plays a central role in hAFMSC osteogenesis. Thus, this study provides significant information on the mechanisms of hAFMSC osteogenesis, which could provide additional molecular basis for the use of calcimimetics in bone regenerative medicine.
File in questo prodotto:
File Dimensione Formato  
2014 SCD.pdf

Solo gestori archivio

Descrizione: Original Research Reports
Tipologia: PDF editoriale
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/532303
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact