Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
We provide an Operator Algebraic approach to N=2 chiral Conformal Field Theory and set up the Noncommutative Geometric framework. Compared to the N=1 case, the structure here is much richer. There are naturally associated nets of spectral triples and the JLO cocycles separate the Ramond sectors. We construct the N=2 superconformal nets of von Neumann algebras in general, classify them in the discrete series c<3, and we define and study an operator algebraic version of the N=2 spectral flow. We prove the coset identification for the N=2 super-Virasoro nets with c<3, a key result whose equivalent in the vertex algebra context has seemingly not been completely proved so far. Finally, the chiral ring is discussed in terms of net representations.
We provide an Operator Algebraic approach to N=2 chiral Conformal Field Theory and set up the Noncommutative Geometric framework. Compared to the N=1 case, the structure here is much richer. There are naturally associated nets of spectral triples and the JLO cocycles separate the Ramond sectors. We construct the N=2 superconformal nets of von Neumann algebras in general, classify them in the discrete series c<3, and we define and study an operator algebraic version of the N=2 spectral flow. We prove the coset identification for the N=2 super-Virasoro nets with c<3, a key result whose equivalent in the vertex algebra context has seemingly not been completely proved so far. Finally, the chiral ring is discussed in terms of net representations.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11564/534502
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
12
10
social impact
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2021-2023 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.