Poly-hydroxy-aspartamide was used as a backbone to synthesize bisphosphonate derivatives thus achieving macromolecular carriers to be potentially used as targeting agents for bone drug delivery. Molecules bearing bisphosphonate groups, such as aminobisphosphonate (ABP) and neridronate (NRD), have been conjugated to polyaspartamide (α,β-poly(N-2-hydroxyethyl)-dl-aspartamide, PHEA), with or without a spacer (succinic acid or 6-aminocaproic acid) thus obtaining PHEA-succinate-ABP and PHEA-caproylcarbamate-ABP and PHEA-ABP and PHEA-NRD, respectively. Bisphosphonate-polymer conjugates were physico-chemically characterized using size exclusion chromatography and 1H-NMR; and their in vitro and ex vivo affinity for bone tissue has been further tested using the hydroxylapatite and rabbit bone binding assays, respectively. In vivo studies were carried out using rats to evaluate the biodistribution features of bisphosphonate-polymer conjugates in comparison with the starting PHEA. In vivo findings evidenced a suitable selectivity of bisphosphonate-polymer conjugates toward the bone tissues also as a function of time. © 2015 The Royal Society of Chemistry.

Bisphosphonate–polyaspartamide conjugates as bone targeted drug delivery systems

CELIA, Christian;
2015-01-01

Abstract

Poly-hydroxy-aspartamide was used as a backbone to synthesize bisphosphonate derivatives thus achieving macromolecular carriers to be potentially used as targeting agents for bone drug delivery. Molecules bearing bisphosphonate groups, such as aminobisphosphonate (ABP) and neridronate (NRD), have been conjugated to polyaspartamide (α,β-poly(N-2-hydroxyethyl)-dl-aspartamide, PHEA), with or without a spacer (succinic acid or 6-aminocaproic acid) thus obtaining PHEA-succinate-ABP and PHEA-caproylcarbamate-ABP and PHEA-ABP and PHEA-NRD, respectively. Bisphosphonate-polymer conjugates were physico-chemically characterized using size exclusion chromatography and 1H-NMR; and their in vitro and ex vivo affinity for bone tissue has been further tested using the hydroxylapatite and rabbit bone binding assays, respectively. In vivo studies were carried out using rats to evaluate the biodistribution features of bisphosphonate-polymer conjugates in comparison with the starting PHEA. In vivo findings evidenced a suitable selectivity of bisphosphonate-polymer conjugates toward the bone tissues also as a function of time. © 2015 The Royal Society of Chemistry.
File in questo prodotto:
File Dimensione Formato  
JMCB2015.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 807.65 kB
Formato Adobe PDF
807.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/588314
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 24
social impact