Petrological investigations of active volcanoes are often supported by mass balance, thermodynamic calculations and/or experiments performed at key conditions. Conversely, the compositions of mineral phases found in natural products are generally used as input data for predictive models calibrated to derive the intensive variables of the magmatic system. In order to evaluate the extent to which mineral chemistry records crystallization conditions, we have compared the compositions of olivine, clinopyroxene, plagioclase and titanomagnetite in 2001-2012 trachybasaltic lavas at Mt. Etna with those obtained through thermodynamic simulations and experiments conducted under anhydrous, water-undersaturated and water-saturated conditions. This systematic comparison allows us to track recent differentiation processes beneath Mt. Etna, as well as the P-T-fO2-H2O variables controlling the solidification path of magma. Two compositionally distinct populations of olivine and clinopyroxene phenocrysts are found in these lavas: Mg-rich and Mg-poor minerals formed at 600-1100MPa and 1100-1250°C, and 0.1-500MPa and 1050-1175°C, respectively. The oxygen fugacity varies by 1-2 log units suggesting water exsolution during magma ascent in the conduit and magma emplacement near the surface. The nucleation and growth of normally zoned plagioclases occur at P <100MPa, when the amount of H2O dissolved in the melt abruptly decreases from about 3.0 to 0.2wt.% due to magma decompression and degassing. This leads to the conclusion that Etnean magmas fractionate throughout the entire length of the vertically developed plumbing system where magma mixing, volatile exsolution and degassing are the most important processes driving eruptions. © 2014 Elsevier B.V.

Reconstruction of magmatic variables governing recent Etnean eruptions: Constraints from mineral chemistry and P-T-fO2-H2O modeling

IEZZI, Gianluca;
2015-01-01

Abstract

Petrological investigations of active volcanoes are often supported by mass balance, thermodynamic calculations and/or experiments performed at key conditions. Conversely, the compositions of mineral phases found in natural products are generally used as input data for predictive models calibrated to derive the intensive variables of the magmatic system. In order to evaluate the extent to which mineral chemistry records crystallization conditions, we have compared the compositions of olivine, clinopyroxene, plagioclase and titanomagnetite in 2001-2012 trachybasaltic lavas at Mt. Etna with those obtained through thermodynamic simulations and experiments conducted under anhydrous, water-undersaturated and water-saturated conditions. This systematic comparison allows us to track recent differentiation processes beneath Mt. Etna, as well as the P-T-fO2-H2O variables controlling the solidification path of magma. Two compositionally distinct populations of olivine and clinopyroxene phenocrysts are found in these lavas: Mg-rich and Mg-poor minerals formed at 600-1100MPa and 1100-1250°C, and 0.1-500MPa and 1050-1175°C, respectively. The oxygen fugacity varies by 1-2 log units suggesting water exsolution during magma ascent in the conduit and magma emplacement near the surface. The nucleation and growth of normally zoned plagioclases occur at P <100MPa, when the amount of H2O dissolved in the melt abruptly decreases from about 3.0 to 0.2wt.% due to magma decompression and degassing. This leads to the conclusion that Etnean magmas fractionate throughout the entire length of the vertically developed plumbing system where magma mixing, volatile exsolution and degassing are the most important processes driving eruptions. © 2014 Elsevier B.V.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0024493714004216-main.pdf

Solo gestori archivio

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Mollo et al 2014-LITHOS-16-09-2014.pdf

accesso aperto

Tipologia: Documento in Pre-print
Dimensione 624.17 kB
Formato Adobe PDF
624.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/596511
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 61
social impact