Unexpected changes in the location of a target for an upcoming action require both attentional reorienting and motor planning update. In both macaque and human brain, the medial posterior parietal cortex is involved in both phenomena but its causal role is still unclear. Here we used on-line rTMS over the putative human V6A (pV6A), a reach-related region in the dorsal part of the anterior bank of the parietooccipital sulcus, during an attention and a reaching task requiring covert shifts of attention and planning of reaching movements toward cued targets in space. We found that rTMS increased RTs to invalidly cued but not to validly cued targets during both the attention and reaching task. Furthermore, we found that rTMS induced a deviation of reaching endpoints toward visual fixation and that this deviation was larger for invalidly cued targets. The results suggest that reorienting signals are used by human pV6A area to rapidly update the current motor plan or the ongoing action when a behaviorally relevant object unexpectedly occurs in an unattended location. The current findings suggest a direct involvement of the actionrelated dorso-medial visual stream in attentional reorienting and a more specific role of pV6A area in the dynamic, on-line control of reaching actions.

rTMS of Medial Parieto-occipital Cortex Interferes with Attentional Reorienting during Attention and Reaching Tasks

TOSONI, ANNALISA;COMMITTERI, Giorgia;
2013-01-01

Abstract

Unexpected changes in the location of a target for an upcoming action require both attentional reorienting and motor planning update. In both macaque and human brain, the medial posterior parietal cortex is involved in both phenomena but its causal role is still unclear. Here we used on-line rTMS over the putative human V6A (pV6A), a reach-related region in the dorsal part of the anterior bank of the parietooccipital sulcus, during an attention and a reaching task requiring covert shifts of attention and planning of reaching movements toward cued targets in space. We found that rTMS increased RTs to invalidly cued but not to validly cued targets during both the attention and reaching task. Furthermore, we found that rTMS induced a deviation of reaching endpoints toward visual fixation and that this deviation was larger for invalidly cued targets. The results suggest that reorienting signals are used by human pV6A area to rapidly update the current motor plan or the ongoing action when a behaviorally relevant object unexpectedly occurs in an unattended location. The current findings suggest a direct involvement of the actionrelated dorso-medial visual stream in attentional reorienting and a more specific role of pV6A area in the dynamic, on-line control of reaching actions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/602124
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 32
social impact