Covertly attending to a location modulates the activity of visual areas even in the absence of visual stimulation. These effects are widespread, being found in the cortical representations of both attended and unattended portions of the visual field. It is not clear, however, whether preparatory modulations depend on subjects' expectation regarding the presence of additional nontarget stimuli in the visual field. Here, we asked subjects to endogenously direct attention to a peripheral location in the upper visual field, to identify the orientation of a low-contrast target stimulus, and we manipulated the number and behavioral relevance of other low-contrast nontarget stimuli in the visual field. Anticipatory (i.e., prestimulus) blood oxygenation level-dependent (BOLD) signal increments in visual cortex were strongest at the contralateral attended location, whereas signal decrements were strongest at the unattended mirror-opposite ipsilateral location/region of visual cortex. Importantly, these strong anticipatory decrements were not related to the presence/absence of nontarget low-contrast stimuli and did not correlate with either weaker target-evoked responses or worse performance. Second, the presence of other low-contrast stimuli in the visual field, even when potential targets, did not modify the anticipatory signal modulation either at target or nontarget locations. We conclude that the topography of spatial attention-related anticipatory BOLD signal modulation across visual cortex, specifically decrements at unattended locations, is mainly determined by processes at the cued location and not by the number or behavioral relevance of distant low-contrast nontarget stimuli elsewhere in the visual field.
Independence of anticipatory signals for spatial attention from number of nontarget stimuli in the visual field.
SESTIERI, CARLO;
2008-01-01
Abstract
Covertly attending to a location modulates the activity of visual areas even in the absence of visual stimulation. These effects are widespread, being found in the cortical representations of both attended and unattended portions of the visual field. It is not clear, however, whether preparatory modulations depend on subjects' expectation regarding the presence of additional nontarget stimuli in the visual field. Here, we asked subjects to endogenously direct attention to a peripheral location in the upper visual field, to identify the orientation of a low-contrast target stimulus, and we manipulated the number and behavioral relevance of other low-contrast nontarget stimuli in the visual field. Anticipatory (i.e., prestimulus) blood oxygenation level-dependent (BOLD) signal increments in visual cortex were strongest at the contralateral attended location, whereas signal decrements were strongest at the unattended mirror-opposite ipsilateral location/region of visual cortex. Importantly, these strong anticipatory decrements were not related to the presence/absence of nontarget low-contrast stimuli and did not correlate with either weaker target-evoked responses or worse performance. Second, the presence of other low-contrast stimuli in the visual field, even when potential targets, did not modify the anticipatory signal modulation either at target or nontarget locations. We conclude that the topography of spatial attention-related anticipatory BOLD signal modulation across visual cortex, specifically decrements at unattended locations, is mainly determined by processes at the cued location and not by the number or behavioral relevance of distant low-contrast nontarget stimuli elsewhere in the visual field.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.