The fault segmentation pattern and the regional stress tensor acting since the Early Quaternary in the intra-Apennine area of central Italy was constrained by integrating two large geological and seismological fault-slip data sets collected for the areas struck by the two most energetic seismic sequences of the last 15 years (Colfiorito 1997, M (w) 6.0 and L'Aquila 2009, M (w) 6.1). The integrated analysis of the earthquake fault association and the reconstruction of the 3D shape of the seismogenic sources were exploited to identify homogeneous seismogenic volumes associated with subsets of geological and focal mechanism data. The independent analysis of geological and seismological data allowed us to observe and highlight similarities between the attitude of the long-term (e.g., Quaternary) and the instantaneous present-day (seismogenic) extensional deformations and to reveal their substantial coaxiality. Coherently, with the results from the kinematic analysis, the stress field inversion also noted a prevailing tensional seismotectonic regime associated with a subhorizontal, NE-SW, minimum stress axis. A minor, very local, and shallow (< 5 km) strike-slip component of the stress field was observed in the Colfiorito sector, where an inherited N-S oriented right-lateral fault was reactivated with sinistral kinematics. Instead, an almost total absence of strike-slip solutions was observed in the L'Aquila area. These results do not agree with those indicating Quaternary regional strike-slip regimes or wide areas characterized by strike-slip deformation during the Colfiorito and L'Aquila seismic sequences.

Fault geometry and active stress from earthquakes and field geology data analysis: the Colfiorito 1997 and L'Aquila 2009 cases (central Italy)

FERRARINI, FEDERICA
Primo
;
LAVECCHIA, Giuseppina
Secondo
;
Rita de NARDIS;BROZZETTI, Francesco
Ultimo
2015-01-01

Abstract

The fault segmentation pattern and the regional stress tensor acting since the Early Quaternary in the intra-Apennine area of central Italy was constrained by integrating two large geological and seismological fault-slip data sets collected for the areas struck by the two most energetic seismic sequences of the last 15 years (Colfiorito 1997, M (w) 6.0 and L'Aquila 2009, M (w) 6.1). The integrated analysis of the earthquake fault association and the reconstruction of the 3D shape of the seismogenic sources were exploited to identify homogeneous seismogenic volumes associated with subsets of geological and focal mechanism data. The independent analysis of geological and seismological data allowed us to observe and highlight similarities between the attitude of the long-term (e.g., Quaternary) and the instantaneous present-day (seismogenic) extensional deformations and to reveal their substantial coaxiality. Coherently, with the results from the kinematic analysis, the stress field inversion also noted a prevailing tensional seismotectonic regime associated with a subhorizontal, NE-SW, minimum stress axis. A minor, very local, and shallow (< 5 km) strike-slip component of the stress field was observed in the Colfiorito sector, where an inherited N-S oriented right-lateral fault was reactivated with sinistral kinematics. Instead, an almost total absence of strike-slip solutions was observed in the L'Aquila area. These results do not agree with those indicating Quaternary regional strike-slip regimes or wide areas characterized by strike-slip deformation during the Colfiorito and L'Aquila seismic sequences.
File in questo prodotto:
File Dimensione Formato  
2015- Ferrarini-2014-PAGEOPH.pdf

Solo gestori archivio

Dimensione 9.36 MB
Formato Adobe PDF
9.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/614928
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 45
social impact