Aims: To evaluate the in vitro effects of extremely low-frequency magnetic field (ELF-MF) on growth and biofilm formation by Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia and Stenotrophomonas maltophilia strains from cystic fibrosis patients. Materials & methods: The motion of selected ions (Fe, Ca, Cu, Zn, Mg, K, Na) was stimulated by the ion resonance effect, then influence on growth and biofilm formation/viability was assessed by spectrophotometry or viability count. Results: Generally, exposure to ELF-MF significantly increased bacterial growth and affected both biofilm formation and viability, although with differences with regard to ions and species considered. Conclusion: Exposure to ELF-MF represents a possible new approach for treatment of biofilm-associated cystic fibrosis lung infections.

Exposure to extremely low-frequency magnetic field affects biofilm formation by cystic fibrosis pathogens

DI BONAVENTURA, GIOVANNI;POMPILIO, ARIANNA;CROCETTA, VALENTINA;BELLOMO, ROSA GRAZIA;SAGGINI, Raoul
2014-01-01

Abstract

Aims: To evaluate the in vitro effects of extremely low-frequency magnetic field (ELF-MF) on growth and biofilm formation by Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia and Stenotrophomonas maltophilia strains from cystic fibrosis patients. Materials & methods: The motion of selected ions (Fe, Ca, Cu, Zn, Mg, K, Na) was stimulated by the ion resonance effect, then influence on growth and biofilm formation/viability was assessed by spectrophotometry or viability count. Results: Generally, exposure to ELF-MF significantly increased bacterial growth and affected both biofilm formation and viability, although with differences with regard to ions and species considered. Conclusion: Exposure to ELF-MF represents a possible new approach for treatment of biofilm-associated cystic fibrosis lung infections.
File in questo prodotto:
File Dimensione Formato  
Di Bonaventura G et al. Future Microbiol. (2014) 9(12), 1303-1317.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/633311
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
social impact