The ability to imagine the world from a different viewpoint is a fundamental competence for spatial reorientation and for imagining what another individual sees in the environment. Here, we investigated the neural bases of such an ability using functional magnetic resonance imaging. Healthy participants detected target displacements across consecutive views of a familiar virtual room, either from the perspective of an avatar (primed condition) or in the absence of such a prime (unprimed condition). In the primed condition, the perspective at test always corresponded to the avatar's perspective, while in the unprimed condition it was randomly chosen as 0, 45 or 135 deg of viewpoint rotation. We observed a behavioral advantage in performing a perspective transformation during the primed condition as compared to an equivalent amount of unprimed perspective change. Although many cortical regions (dorsal parietal, parieto-temporo-occipital junction, precuneus and retrosplenial cortex/parieto-occipital sulcus or RSC/POS) were involved in encoding and retrieving target location from different perspectives and were modulated by the amount of viewpoint rotation, the RSC/POS was the only area showing decreased activity in the primed as compared to the unprimed condition, suggesting that this region anticipates the upcoming perspective change. The retrosplenial cortex/parieto-occipital sulcus appears to play a special role in the allocentric coding of heading directions.

Role of the human retrosplenial cortex/parieto-occipital sulcus in perspective priming

SULPIZIO, VALENTINA
Primo
;
COMMITTERI, Giorgia
Secondo
;
2016-01-01

Abstract

The ability to imagine the world from a different viewpoint is a fundamental competence for spatial reorientation and for imagining what another individual sees in the environment. Here, we investigated the neural bases of such an ability using functional magnetic resonance imaging. Healthy participants detected target displacements across consecutive views of a familiar virtual room, either from the perspective of an avatar (primed condition) or in the absence of such a prime (unprimed condition). In the primed condition, the perspective at test always corresponded to the avatar's perspective, while in the unprimed condition it was randomly chosen as 0, 45 or 135 deg of viewpoint rotation. We observed a behavioral advantage in performing a perspective transformation during the primed condition as compared to an equivalent amount of unprimed perspective change. Although many cortical regions (dorsal parietal, parieto-temporo-occipital junction, precuneus and retrosplenial cortex/parieto-occipital sulcus or RSC/POS) were involved in encoding and retrieving target location from different perspectives and were modulated by the amount of viewpoint rotation, the RSC/POS was the only area showing decreased activity in the primed as compared to the unprimed condition, suggesting that this region anticipates the upcoming perspective change. The retrosplenial cortex/parieto-occipital sulcus appears to play a special role in the allocentric coding of heading directions.
File in questo prodotto:
File Dimensione Formato  
Sulpizio.2016.NI.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/641909
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 29
social impact