Previous evidence showed that, due to refocusing of static dephasing effects around large vessels, spin-echo (SE) BOLD signals offer an increased linearity and promptness with respect to gradient-echo (GE) acquisition, even at low field. These characteristics suggest that, despite the reduced sensitivity, SE fMRI might also provide a potential benefit when investigating spontaneous fluctuations of brain activity. However, there are no reports on the application of spin-echo fMRI for connectivity studies at low field. In this study we compared resting state functional connectivity as measured with GE and SE EPI sequences at 3T. Main results showed that, within subject, the GE sensitivity is overall larger with respect to that of SE, but to a less extent than previously reported for activation studies. Noteworthy, the reduced sensitivity of SE was counterbalanced by a reduced inter-subject variability, resulting in comparable group statistical connectivity maps for the two sequences. Furthermore, the SE method performed better in the ventral portion of the default mode network, a region affected by signal dropout in standard GE acquisition. Future studies should clarify if these features of the SE BOLD signal can be beneficial to distinguish subtle variations of functional connectivity across different populations and/or treatments when vascular confounds or regions affected by signal dropout can be a critical issue.

Resting state BOLD functional connectivity at 3T: Spin echo versus gradient echo EPI

CHIACCHIARETTA, PIERO;FERRETTI, Antonio
2015-01-01

Abstract

Previous evidence showed that, due to refocusing of static dephasing effects around large vessels, spin-echo (SE) BOLD signals offer an increased linearity and promptness with respect to gradient-echo (GE) acquisition, even at low field. These characteristics suggest that, despite the reduced sensitivity, SE fMRI might also provide a potential benefit when investigating spontaneous fluctuations of brain activity. However, there are no reports on the application of spin-echo fMRI for connectivity studies at low field. In this study we compared resting state functional connectivity as measured with GE and SE EPI sequences at 3T. Main results showed that, within subject, the GE sensitivity is overall larger with respect to that of SE, but to a less extent than previously reported for activation studies. Noteworthy, the reduced sensitivity of SE was counterbalanced by a reduced inter-subject variability, resulting in comparable group statistical connectivity maps for the two sequences. Furthermore, the SE method performed better in the ventral portion of the default mode network, a region affected by signal dropout in standard GE acquisition. Future studies should clarify if these features of the SE BOLD signal can be beneficial to distinguish subtle variations of functional connectivity across different populations and/or treatments when vascular confounds or regions affected by signal dropout can be a critical issue.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/642211
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact