Fetal magnetocardiograms (fMCGs) have been successfully processed with independent component analysis (ICA) to separate the fetal cardiac signals, but ICA effectiveness can be limited by signal nonstationarities due to fetal movements. We propose an ICA-based method to improve the quality of fetal signals separated from fMCG affected by fetal movements. This technique (SegICA) includes a procedure to detect signal nonstationarities, according to which the fMCG recordings are divided in stationary segments that are then processed with ICA. The first and second statistical moments and the signal polarity reversal were used at different threshold levels to detect signal transients. SegICA effectiveness was assessed in two fMCG datasets (with and without fetal movements) by comparing the signal-to-noise ratio (SNR) of the signals extracted with ICA and with SegICA. Results showed that the SNR of fetal signals affected by fetal movements improved with SegICA, whereas the SNR gain was negligible elsewhere. The best measure to detect signal nonstationarities of physiological origin was signal polarity reversal at threshold level 0.9. The first statistical moment also provided good results at threshold level 0.6. SegICA seems a promising method to separate fetal cardiac signals of improved quality from nonstationary fMCG recordings affected by fetal movements.

Segmented independent component analysis for improved separation of fetal cardiac signals from nonstationary fetal magnetocardiograms

COMANI, Silvia
2015-01-01

Abstract

Fetal magnetocardiograms (fMCGs) have been successfully processed with independent component analysis (ICA) to separate the fetal cardiac signals, but ICA effectiveness can be limited by signal nonstationarities due to fetal movements. We propose an ICA-based method to improve the quality of fetal signals separated from fMCG affected by fetal movements. This technique (SegICA) includes a procedure to detect signal nonstationarities, according to which the fMCG recordings are divided in stationary segments that are then processed with ICA. The first and second statistical moments and the signal polarity reversal were used at different threshold levels to detect signal transients. SegICA effectiveness was assessed in two fMCG datasets (with and without fetal movements) by comparing the signal-to-noise ratio (SNR) of the signals extracted with ICA and with SegICA. Results showed that the SNR of fetal signals affected by fetal movements improved with SegICA, whereas the SNR gain was negligible elsewhere. The best measure to detect signal nonstationarities of physiological origin was signal polarity reversal at threshold level 0.9. The first statistical moment also provided good results at threshold level 0.6. SegICA seems a promising method to separate fetal cardiac signals of improved quality from nonstationary fMCG recordings affected by fetal movements.
File in questo prodotto:
File Dimensione Formato  
BMT 2015 Murta-Moraes-Baffa-Wakai-Comani.pdf

Solo gestori archivio

Descrizione: Article
Tipologia: Documento in Post-print
Dimensione 856.05 kB
Formato Adobe PDF
856.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/642366
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact