Medulloblastoma (MB) is the most common malignant brain tumor of pediatric age and is characterized by cells expressing stem, astroglial, and neuronal markers. Among them, stem-like cells (hMB-SLCs) represent a fraction of the tumor cell population with the potential of self-renewal and proliferation and have been associated with tumor poor prognosis. In this context, microRNAs have been described as playing a pivotal role in stem cells differentiation. In our paper, we analyze microRNAs profile and genes expression of hMB-SLCs before and after Retinoic Acid- (RA-) induced differentiation. We aimed to identify pivotal players of specific pathways sustaining stemness and/or tumor development and progression and integrate the results of our recent proteomic study. Our results uncovered 22 differentially expressed microRNAs that were used as input together with deregulated genes and proteins in the Genomatix Pathway System (GePS) analysis revealing 3 subnetworks that could be interestingly involved in the maintenance of hMB-SLCs proliferation. Taken together, our findings highlight microRNAs, genes, and proteins that are significantly modulated in hMB-SLCs with respect to their RA-differentiated counterparts and could open new perspectives for prognostic and therapeutic intervention on MB. © 2016 Giuseppina Catanzaro et al.

MicroRNAs-Proteomic Networks Characterizing Human Medulloblastoma-SLCs

RONCI, Maurizio;
2016-01-01

Abstract

Medulloblastoma (MB) is the most common malignant brain tumor of pediatric age and is characterized by cells expressing stem, astroglial, and neuronal markers. Among them, stem-like cells (hMB-SLCs) represent a fraction of the tumor cell population with the potential of self-renewal and proliferation and have been associated with tumor poor prognosis. In this context, microRNAs have been described as playing a pivotal role in stem cells differentiation. In our paper, we analyze microRNAs profile and genes expression of hMB-SLCs before and after Retinoic Acid- (RA-) induced differentiation. We aimed to identify pivotal players of specific pathways sustaining stemness and/or tumor development and progression and integrate the results of our recent proteomic study. Our results uncovered 22 differentially expressed microRNAs that were used as input together with deregulated genes and proteins in the Genomatix Pathway System (GePS) analysis revealing 3 subnetworks that could be interestingly involved in the maintenance of hMB-SLCs proliferation. Taken together, our findings highlight microRNAs, genes, and proteins that are significantly modulated in hMB-SLCs with respect to their RA-differentiated counterparts and could open new perspectives for prognostic and therapeutic intervention on MB. © 2016 Giuseppina Catanzaro et al.
File in questo prodotto:
File Dimensione Formato  
2016_Catanzaro_et_al_Stem Cells International.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/644872
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact