Influenza virus represents a serious threat to public health. The lack of effective drugs against flu prompted researchers to identify more promising viral target. In this respect hemagglutinin (HA) can represent an interesting option because of its pivotal role in the infection process.With this aim we collected a small library of commercially available compounds starting from a large database and performing a diversity-based selection to reduce the number of screened compounds avoiding structural redundancy of the library. Selected compounds were tested for their hemagglutination-inhibiting (HI) ability against two different A/H1N1 viral strains (one of which is oseltamivir sensitive), and 17 of them showed the ability to interact with HA. Five drug-like molecules, in particular, were able to impair hemagglutination of both A/H1N1 viral strains under study and to inhibit cytopathic effect and hemolysis at sub-micromolar level.

Identification of small molecules acting against H1N1 influenza A virus

AGAMENNONE, Mariangela;
2016-01-01

Abstract

Influenza virus represents a serious threat to public health. The lack of effective drugs against flu prompted researchers to identify more promising viral target. In this respect hemagglutinin (HA) can represent an interesting option because of its pivotal role in the infection process.With this aim we collected a small library of commercially available compounds starting from a large database and performing a diversity-based selection to reduce the number of screened compounds avoiding structural redundancy of the library. Selected compounds were tested for their hemagglutination-inhibiting (HI) ability against two different A/H1N1 viral strains (one of which is oseltamivir sensitive), and 17 of them showed the ability to interact with HA. Five drug-like molecules, in particular, were able to impair hemagglutination of both A/H1N1 viral strains under study and to inhibit cytopathic effect and hemolysis at sub-micromolar level.
File in questo prodotto:
File Dimensione Formato  
Virology_2016_488_249-258.pdf

Solo gestori archivio

Descrizione: Articolo pubblicato, Virology 2016
Tipologia: PDF editoriale
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/653627
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact