Research in recent years has extensively investigated the therapeutic efficacy of mesenchymal stromal cells in regenerative medicine for many neurodegenerative diseases at preclinical and clinical stages. However, the success rate of stem cell therapy remains less at translational phase. Lack of relevant animal models that potentially simulate the molecular etiology of human pathological symptoms might be a reason behind such poor clinical outcomes associated with stem cell therapy. Apparently, self-renewal and differentiation ability of mesenchymal stem cells may help to study the early developmental signaling pathways connected with the diseases, such as Alzheimer's disease, Amyotrophic lateral sclerosis (ALS), etc., at in vitro level. Cannabidiol, a non-psychotrophic cannabinoid, has been demonstrated as a potent anti-inflammatory and neuroprotective agent in neurological preclinical models. In the present study, we investigated the modulatory role of cannabidiol on genes associated with ALS using human gingiva-derived mesenchymal stromal cells (hGMSCs) as an in vitro model system. Next generation transcriptomic sequencing analysis demonstrated considerable modifications in the expression of genes connected with ALS pathology, oxidative stress, mitochondrial dysfunction, and excitotoxicity in hGMSCs treated with cannabidiol. Our results suggest the efficacy of cannabidiol to delineate the unknown molecular pathways, which may underlie ALS pathology at an early stage using hGMSCs as a compelling in vitro system. J. Cell. Biochem. 118: 819-828, 2017. © 2016 Wiley Periodicals, Inc.

Gingival Stromal Cells as an In Vitro Model: Cannabidiol Modulates Genes Linked With Amyotrophic Lateral Sclerosis

DIOMEDE, FRANCESCA;PIATTELLI, Adriano;TRUBIANI, Oriana
Ultimo
2017-01-01

Abstract

Research in recent years has extensively investigated the therapeutic efficacy of mesenchymal stromal cells in regenerative medicine for many neurodegenerative diseases at preclinical and clinical stages. However, the success rate of stem cell therapy remains less at translational phase. Lack of relevant animal models that potentially simulate the molecular etiology of human pathological symptoms might be a reason behind such poor clinical outcomes associated with stem cell therapy. Apparently, self-renewal and differentiation ability of mesenchymal stem cells may help to study the early developmental signaling pathways connected with the diseases, such as Alzheimer's disease, Amyotrophic lateral sclerosis (ALS), etc., at in vitro level. Cannabidiol, a non-psychotrophic cannabinoid, has been demonstrated as a potent anti-inflammatory and neuroprotective agent in neurological preclinical models. In the present study, we investigated the modulatory role of cannabidiol on genes associated with ALS using human gingiva-derived mesenchymal stromal cells (hGMSCs) as an in vitro model system. Next generation transcriptomic sequencing analysis demonstrated considerable modifications in the expression of genes connected with ALS pathology, oxidative stress, mitochondrial dysfunction, and excitotoxicity in hGMSCs treated with cannabidiol. Our results suggest the efficacy of cannabidiol to delineate the unknown molecular pathways, which may underlie ALS pathology at an early stage using hGMSCs as a compelling in vitro system. J. Cell. Biochem. 118: 819-828, 2017. © 2016 Wiley Periodicals, Inc.
File in questo prodotto:
File Dimensione Formato  
2017 Gingival.pdf

Solo gestori archivio

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 771.34 kB
Formato Adobe PDF
771.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/656215
Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 44
social impact