Excessive intraperitoneal absorption of glucose during peritoneal dialysis has both local cytotoxic and systemic metabolic effects. Here we evaluate peritoneal dialysis solutions containing L-carnitine, an osmotically active compound that induces fluid flow across the peritoneum. In rats, L-carnitine in the peritoneal cavity had a dose-dependent osmotic effect similar to glucose. Analogous ultrafiltration and small solute transport characteristics were found for dialysates containing 3.86% glucose, equimolar L-carnitine, or combinations of both osmotic agents in mice. About half of the ultrafiltration generated by L-carnitine reflected facilitated water transport by aquaporin-1 (AQP1) water channels of endothelial cells. Nocturnal exchanges with 1.5% glucose and 0.25% L-carnitine in four patients receiving continuous ambulatory peritoneal dialysis were well tolerated and associated with higher net ultrafiltration than that achieved with 2.5% glucose solutions, despite the lower osmolarity of the carnitine-containing solution. Addition of L-carnitine to endothelial cells in culture increased the expression of AQP1, significantly improved viability, and prevented glucose-induced apoptosis. In a standard toxicity test, the addition of L-carnitine to peritoneal dialysis solution improved the viability of L929 fibroblasts. Thus, our studies support the use of L-carnitine as an alternative osmotic agent in peritoneal dialysis. © 2011 International Society of Nephrology.

L-Carnitine is an osmotic agent suitable for peritoneal dialysis

BONOMINI, Mario;PANDOLFI, Assunta;DI LIBERATO, LORENZO;DI SILVESTRE, SARA;DI TOMO, PAMELA;MONACO, MARIA PIA;DI PIETRO, NATALIA;ARDUINI, Arduino
2011-01-01

Abstract

Excessive intraperitoneal absorption of glucose during peritoneal dialysis has both local cytotoxic and systemic metabolic effects. Here we evaluate peritoneal dialysis solutions containing L-carnitine, an osmotically active compound that induces fluid flow across the peritoneum. In rats, L-carnitine in the peritoneal cavity had a dose-dependent osmotic effect similar to glucose. Analogous ultrafiltration and small solute transport characteristics were found for dialysates containing 3.86% glucose, equimolar L-carnitine, or combinations of both osmotic agents in mice. About half of the ultrafiltration generated by L-carnitine reflected facilitated water transport by aquaporin-1 (AQP1) water channels of endothelial cells. Nocturnal exchanges with 1.5% glucose and 0.25% L-carnitine in four patients receiving continuous ambulatory peritoneal dialysis were well tolerated and associated with higher net ultrafiltration than that achieved with 2.5% glucose solutions, despite the lower osmolarity of the carnitine-containing solution. Addition of L-carnitine to endothelial cells in culture increased the expression of AQP1, significantly improved viability, and prevented glucose-induced apoptosis. In a standard toxicity test, the addition of L-carnitine to peritoneal dialysis solution improved the viability of L929 fibroblasts. Thus, our studies support the use of L-carnitine as an alternative osmotic agent in peritoneal dialysis. © 2011 International Society of Nephrology.
File in questo prodotto:
File Dimensione Formato  
Bonomini M et al Kidney I 2011.pdf

accesso aperto

Tipologia: Documento in Post-print
Dimensione 395.17 kB
Formato Adobe PDF
395.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/657047
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact