Burkitt's lymphoma is an aggressive B cell lymphoma whose pathogenesis involves mainly c-Myc translocation and hyperexpression, in addition to antigen-independent BCR signaling and, in some cases, EBV infection. As result of BCR signaling activation, the PI3K/AKT/mTOR pathway results constitutively activated also in the absence of EBV, promoting cell survival and counterbalancing the pro-apoptotic function that c-Myc may also exert. In this study we found that quercetin, a bioflavonoid widely distributed in plant kingdom, reduced c-Myc expression and inhibited the PI3K/AKT/mTOR activity in BL, leading to an apoptotic cell death. We observed a higher cytotoxic effect against the EBV-negative BL cells in comparison with the positive ones, suggesting that this oncogenic gammaherpesvirus confers an additional resistance to the quercetin treatment. Besides cell survival, PI3K/AKT/mTOR pathway also regulates autophagy: we found that quercetin induced a complete autophagic flux in BL cells, that contributes to c-Myc reduction in some of these cells. Indeed, autophagy inhibition by chloroquine partially restored c-Myc expression in EBV-positive (Akata) and EBV-negative (2A8) cells that harbor c-Myc mutation. Interestingly, chloroquine did not affect the quercetin-mediated reduction of c-Myc expression in Ramos cells, that have no c-Myc mutation in the coding region, although autophagy was induced. These results suggest that mutant c-Myc could be partially degraded through autophagy in BL cells, as previously reported for other mutant oncogenic proteins. (C) 2016 Elsevier Ltd. All rights reserved.

Concomitant reduction of c-Myc expression and PI3K/AKT/mTOR signaling by quercetin induces a strong cytotoxic effect against Burkitt's lymphoma

D'ORAZI, Gabriella;
2016-01-01

Abstract

Burkitt's lymphoma is an aggressive B cell lymphoma whose pathogenesis involves mainly c-Myc translocation and hyperexpression, in addition to antigen-independent BCR signaling and, in some cases, EBV infection. As result of BCR signaling activation, the PI3K/AKT/mTOR pathway results constitutively activated also in the absence of EBV, promoting cell survival and counterbalancing the pro-apoptotic function that c-Myc may also exert. In this study we found that quercetin, a bioflavonoid widely distributed in plant kingdom, reduced c-Myc expression and inhibited the PI3K/AKT/mTOR activity in BL, leading to an apoptotic cell death. We observed a higher cytotoxic effect against the EBV-negative BL cells in comparison with the positive ones, suggesting that this oncogenic gammaherpesvirus confers an additional resistance to the quercetin treatment. Besides cell survival, PI3K/AKT/mTOR pathway also regulates autophagy: we found that quercetin induced a complete autophagic flux in BL cells, that contributes to c-Myc reduction in some of these cells. Indeed, autophagy inhibition by chloroquine partially restored c-Myc expression in EBV-positive (Akata) and EBV-negative (2A8) cells that harbor c-Myc mutation. Interestingly, chloroquine did not affect the quercetin-mediated reduction of c-Myc expression in Ramos cells, that have no c-Myc mutation in the coding region, although autophagy was induced. These results suggest that mutant c-Myc could be partially degraded through autophagy in BL cells, as previously reported for other mutant oncogenic proteins. (C) 2016 Elsevier Ltd. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1357272516302680-main.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/659311
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 52
social impact