The management of neurological disorders have huge and increasing human and economic costs. Despite this, there is a scarcity of effective therapeutics, and there is an extreme urgency for new and real treatments. In this short review we analyze some promising advancements in the search of new bioactive molecules targeting neuronal nitric oxide synthase (nNOS), an enzyme deputed to the biosynthesis of nitric oxide (NO). In different conditions of neuronal damages, this molecule is overproduced, contributing to the pathogenesis and progression of neuronal diseases. Two main approaches to modulate nNOS are discussed: a first one consisting in the direct inhibition of the enzyme by means of small organic molecules, which can be also active against other different targets involved in such diseases. A second section is dedicated to molecules able to prevent the formation of the ternary complex N-methyl-D-aspartate (NMDA)-type glutamate receptors, postsynaptic density-95 (PSD95) protein-nNOS, which is necessary to activate the latter for the biosynthesis of NO.

Targeting neuronal nitric oxide synthase as a valuable strategy for the therapy of neurological disorders

MACCALLINI, Cristina;AMOROSO, Rosa
2016-01-01

Abstract

The management of neurological disorders have huge and increasing human and economic costs. Despite this, there is a scarcity of effective therapeutics, and there is an extreme urgency for new and real treatments. In this short review we analyze some promising advancements in the search of new bioactive molecules targeting neuronal nitric oxide synthase (nNOS), an enzyme deputed to the biosynthesis of nitric oxide (NO). In different conditions of neuronal damages, this molecule is overproduced, contributing to the pathogenesis and progression of neuronal diseases. Two main approaches to modulate nNOS are discussed: a first one consisting in the direct inhibition of the enzyme by means of small organic molecules, which can be also active against other different targets involved in such diseases. A second section is dedicated to molecules able to prevent the formation of the ternary complex N-methyl-D-aspartate (NMDA)-type glutamate receptors, postsynaptic density-95 (PSD95) protein-nNOS, which is necessary to activate the latter for the biosynthesis of NO.
File in questo prodotto:
File Dimensione Formato  
Neural Regeneration Research 1731-1734.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 374.44 kB
Formato Adobe PDF
374.44 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/665982
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact