Tropospheric ozone (O3) is an important atmospheric pollutant and climate forcer. The Mediterranean basin is a hot-spot region in terms of short-term O3 distribution, with frequent episodes of high tropospheric O3, especially during summer. To improve the characterisation of summer O3 variability in the Mediterranean area, during the period 6–27 August 2009 an experimental campaign was conducted at Campo Imperatore, Mt Portella (CMP), a high mountain site (2,388 m a.s.l.) located in the central Italian Apennines. As deduced from analysis of atmospheric circulation, the measurement site was significantly affected by air masses originating over the Mediterranean basin, which affected the measurement site for 32 % of the time. Analysis of average values and diurnal and day-to-day variability revealed that CMP O3 observations (average value 60.0 ± 5.1 ppbv) were comparable with measurements at other European mountain stations, indicating a prevalent effect of meteorological conditions and atmospheric transport on the synoptic scale. In fact, only a small “reverse” diurnal variation typically characterises diurnal O3 variability because of local thermal wind circulation, which sporadically favours transport of air masses rich in O3 from the foothill regions. Statistical analysis of five-day back-trajectory ensembles indicates that synoptic-scale air-mass transport from the Mediterranean Sea usually results in decreasing O3 concentrations at CMP, whereas the highest hourly O3 values are mostly associated with air masses from central continental Europe, eastern Europe, and northern Italy. High O3 concentrations are also related to downward air-mass transport from higher altitudes. Comparison of in-situ O3 variability with tropospheric O3 satellite-based measurements reveals similar features of the two data sets. Together with the results from back-trajectory analysis, this indicates that CMP measurements might usefully improve characterisation of broad-scale O3 variability over the central Mediterranean basin.
Analysis of Summer Ozone Observations at a High Mountain Site in Central Italy (Campo Imperatore, 2388 m a.s.l.)
DI CARLO, PIEROSecondo
;
2013-01-01
Abstract
Tropospheric ozone (O3) is an important atmospheric pollutant and climate forcer. The Mediterranean basin is a hot-spot region in terms of short-term O3 distribution, with frequent episodes of high tropospheric O3, especially during summer. To improve the characterisation of summer O3 variability in the Mediterranean area, during the period 6–27 August 2009 an experimental campaign was conducted at Campo Imperatore, Mt Portella (CMP), a high mountain site (2,388 m a.s.l.) located in the central Italian Apennines. As deduced from analysis of atmospheric circulation, the measurement site was significantly affected by air masses originating over the Mediterranean basin, which affected the measurement site for 32 % of the time. Analysis of average values and diurnal and day-to-day variability revealed that CMP O3 observations (average value 60.0 ± 5.1 ppbv) were comparable with measurements at other European mountain stations, indicating a prevalent effect of meteorological conditions and atmospheric transport on the synoptic scale. In fact, only a small “reverse” diurnal variation typically characterises diurnal O3 variability because of local thermal wind circulation, which sporadically favours transport of air masses rich in O3 from the foothill regions. Statistical analysis of five-day back-trajectory ensembles indicates that synoptic-scale air-mass transport from the Mediterranean Sea usually results in decreasing O3 concentrations at CMP, whereas the highest hourly O3 values are mostly associated with air masses from central continental Europe, eastern Europe, and northern Italy. High O3 concentrations are also related to downward air-mass transport from higher altitudes. Comparison of in-situ O3 variability with tropospheric O3 satellite-based measurements reveals similar features of the two data sets. Together with the results from back-trajectory analysis, this indicates that CMP measurements might usefully improve characterisation of broad-scale O3 variability over the central Mediterranean basin.File | Dimensione | Formato | |
---|---|---|---|
Cristofanelli2013_Article_AnalysisOfSummerOzoneObservati.pdf
Solo gestori archivio
Tipologia:
PDF editoriale
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.