Glucose transporter 4 (GLUT4) is firmly established to play a pivotal role in glucose metabolism and in particular in modulating the insulin-stimulated glucose transport in several tissues, such as skeletal muscle and adipose tissue. Stimulation of GLUT4 by insulin results in its translocation to the plasma membrane, activation of several kinases, and finally in a large glucose influx into cells. PURPOSE: In this study we investigated the modulating properties of four biologically active oxyprenylated ferulic acid and umbelliferone derivatives and of their unprenylated parent compounds on GLUT-4 mediated glucose uptake and translocation. METHODS: Oxyprenylated phenylpropanoids have been synthesized in high yields and purity by already reported methodologies. All the synthesized chemicals were tested for their capacity to modulate GLUT4 mediated glucose uptake and GLUT4 translocation in L6 rat skeletal myoblasts in the concentration range 0.1 - 10 µM. Insulin (0.1 µM) was used as positive control. Western blot analysis was employed to assess if GLUT4 translocation occurred prior to increase of glucose uptake. Statistical analyses were carried out by the Dunnett multiple comparison test. RESULTS: 4'-Geranyloxyferulic acid (GOFA), 7-isopentenyloxycoumarin, and auraptene (7-geranyloxycoumarin) increased glucose uptake in a concentration-dependent manner, and significant increases were observed at 0.1 µM for GOFA, and 10 µM for 7-isopentenyloxycoumarin, and auraptene. These products also were able to significantly promote the translocation of GLUT4 to the plasma membrane of L6 myotubes. After treatment with compounds for 15 min, the incorporated amounts of GOFA, 7-isopentenyloxucoumarin, and auraptene were 0.15, 0.32, and 1.77 nmols/60-mm culture dish, respectively. A sample of raw Italian propolis, found to be rich in GOFA and auraptene, was also seen to mimic insulin-effect in the concentration range 0.01 - 1.0 mg/ml. CONCLUSIONS: Among the compounds assayed, auraptene showed to possess potentialities to be a potent activator of both translocation of GLUT4 and glucose influx into skeletal muscle cells with the highest bioavailability among effective compounds. Its capacity to modulate sugar metabolism, coupled to its presence in edible Citrus fruits, can be regarded as an additional reason to account for the already known stimulating properties of some vegetable (e.g. bitter orange).

The Interaction of Auraptene and Other Oxyprenylated Phenylpropanoids with Glucose Transporter Type 4

GENOVESE, Salvatore;EPIFANO, Francesco
;
TADDEO, VITO ALESSANDRO;FIORITO, SERENA
2017-01-01

Abstract

Glucose transporter 4 (GLUT4) is firmly established to play a pivotal role in glucose metabolism and in particular in modulating the insulin-stimulated glucose transport in several tissues, such as skeletal muscle and adipose tissue. Stimulation of GLUT4 by insulin results in its translocation to the plasma membrane, activation of several kinases, and finally in a large glucose influx into cells. PURPOSE: In this study we investigated the modulating properties of four biologically active oxyprenylated ferulic acid and umbelliferone derivatives and of their unprenylated parent compounds on GLUT-4 mediated glucose uptake and translocation. METHODS: Oxyprenylated phenylpropanoids have been synthesized in high yields and purity by already reported methodologies. All the synthesized chemicals were tested for their capacity to modulate GLUT4 mediated glucose uptake and GLUT4 translocation in L6 rat skeletal myoblasts in the concentration range 0.1 - 10 µM. Insulin (0.1 µM) was used as positive control. Western blot analysis was employed to assess if GLUT4 translocation occurred prior to increase of glucose uptake. Statistical analyses were carried out by the Dunnett multiple comparison test. RESULTS: 4'-Geranyloxyferulic acid (GOFA), 7-isopentenyloxycoumarin, and auraptene (7-geranyloxycoumarin) increased glucose uptake in a concentration-dependent manner, and significant increases were observed at 0.1 µM for GOFA, and 10 µM for 7-isopentenyloxycoumarin, and auraptene. These products also were able to significantly promote the translocation of GLUT4 to the plasma membrane of L6 myotubes. After treatment with compounds for 15 min, the incorporated amounts of GOFA, 7-isopentenyloxucoumarin, and auraptene were 0.15, 0.32, and 1.77 nmols/60-mm culture dish, respectively. A sample of raw Italian propolis, found to be rich in GOFA and auraptene, was also seen to mimic insulin-effect in the concentration range 0.01 - 1.0 mg/ml. CONCLUSIONS: Among the compounds assayed, auraptene showed to possess potentialities to be a potent activator of both translocation of GLUT4 and glucose influx into skeletal muscle cells with the highest bioavailability among effective compounds. Its capacity to modulate sugar metabolism, coupled to its presence in edible Citrus fruits, can be regarded as an additional reason to account for the already known stimulating properties of some vegetable (e.g. bitter orange).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/669552
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact