Members of the genus Lathyrus are used as food and as traditional medicines. In order to find new sources of biologically-active compounds, chemical and biological profiles of two Lathyrus species (L. czeczottianus and L. nissolia) were investigated. Chemical profiles were evaluated by HPLC-ESI-MSn, as well as by their total phenolic and flavonoid contents. In addition, antioxidant, enzyme inhibitory, and cytotoxic effects were also investigated. Antioxidant properties were tested by using different assays (DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelation). Cholinesterases (AChE and BChE), tyrosinase, α-amylase, and α-glucosidase were used to evaluate enzyme inhibitory effects. Moreover, vitexin (apigenin-8-C-glucoside) and 5-O-caffeoylquinic acid were further subjected to molecular docking experiments to provide insights about their interactions at molecular level with the tested enzymes. In vitro cytotoxic effects were examined against human embryonic kidney cells (HEK293) by using iCELLigence real time cell analysis system. Generally, L. czeczottianus exhibited stronger antioxidant properties than L. nissolia. However, L. nissolia had remarkable enzyme inhibitory effects against cholinesterase, amylase and glucosidase. HPLC-ESI-MSn analysis revealed that flavonoids were major components in these extracts. On the basis of these results, Lathyrus extracts were rich in biologically active components; thus, these species could be utilized to design new phytopharmaceutical and nutraceutical formulations.

Traditionally used lathyrus species: Phytochemical composition, antioxidant activity, enzyme inhibitory properties, cytotoxic effects, and In Silico studies of L. Czeczottianus and L. Nissolia

Mollica, Adriano;
2017-01-01

Abstract

Members of the genus Lathyrus are used as food and as traditional medicines. In order to find new sources of biologically-active compounds, chemical and biological profiles of two Lathyrus species (L. czeczottianus and L. nissolia) were investigated. Chemical profiles were evaluated by HPLC-ESI-MSn, as well as by their total phenolic and flavonoid contents. In addition, antioxidant, enzyme inhibitory, and cytotoxic effects were also investigated. Antioxidant properties were tested by using different assays (DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelation). Cholinesterases (AChE and BChE), tyrosinase, α-amylase, and α-glucosidase were used to evaluate enzyme inhibitory effects. Moreover, vitexin (apigenin-8-C-glucoside) and 5-O-caffeoylquinic acid were further subjected to molecular docking experiments to provide insights about their interactions at molecular level with the tested enzymes. In vitro cytotoxic effects were examined against human embryonic kidney cells (HEK293) by using iCELLigence real time cell analysis system. Generally, L. czeczottianus exhibited stronger antioxidant properties than L. nissolia. However, L. nissolia had remarkable enzyme inhibitory effects against cholinesterase, amylase and glucosidase. HPLC-ESI-MSn analysis revealed that flavonoids were major components in these extracts. On the basis of these results, Lathyrus extracts were rich in biologically active components; thus, these species could be utilized to design new phytopharmaceutical and nutraceutical formulations.
File in questo prodotto:
File Dimensione Formato  
Front Pharmacol 2017 Mollica.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: PDF editoriale
Dimensione 5.79 MB
Formato Adobe PDF
5.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/673087
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 58
social impact