HER2 tyrosine kinase receptor is a validated target in breast cancer therapy. However, increasing evidence points to a major role of Δ16HER2 splice variant commonly coexpressed with HER2 and identified as a clinically important HER2 molecular alteration promoting aggressive metastatic breast cancer. Consistently, mice transgenic for the human Δ16HER2 isoform (Δ16HER2 mice) develop invasive mammary carcinomas with early onset and 100% penetrance. The present study provides preclinical evidence that Δ16HER2 expression confers de novo resistance to standard anti-HER2-therapies such as Lapatinib and acquired resistance to the selective Src inhibitor Saracatinib in breast cancer. Of note, Dacomitinib, an irreversible small molecule pan-HER inhibitor, was able to completely suppress Δ16HER2-driven breast carcinogenesis. Thus, only Dacomitinib may offer benefit in this molecularly defined patient subset by irreversibly inhibiting Δ16HER2 activation.
Irreversible inhibition of Î16HER2 is necessary to suppress Î16HER2-positive breast carcinomas resistant to Lapatinib
HYSI, ALBANA;IEZZI, MANUELA;
2016-01-01
Abstract
HER2 tyrosine kinase receptor is a validated target in breast cancer therapy. However, increasing evidence points to a major role of Δ16HER2 splice variant commonly coexpressed with HER2 and identified as a clinically important HER2 molecular alteration promoting aggressive metastatic breast cancer. Consistently, mice transgenic for the human Δ16HER2 isoform (Δ16HER2 mice) develop invasive mammary carcinomas with early onset and 100% penetrance. The present study provides preclinical evidence that Δ16HER2 expression confers de novo resistance to standard anti-HER2-therapies such as Lapatinib and acquired resistance to the selective Src inhibitor Saracatinib in breast cancer. Of note, Dacomitinib, an irreversible small molecule pan-HER inhibitor, was able to completely suppress Δ16HER2-driven breast carcinogenesis. Thus, only Dacomitinib may offer benefit in this molecularly defined patient subset by irreversibly inhibiting Δ16HER2 activation.File | Dimensione | Formato | |
---|---|---|---|
Tilio 2016 1-s2.0-S0304383516304475-main.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
PDF editoriale
Dimensione
3.11 MB
Formato
Adobe PDF
|
3.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.