Telomerase (TERT) is overexpressed in 80% to 90% of primary tumors and contributes to sustaining the transformed phenotype. The identification of several TERT epitopes in tumor cells has elevated the status of TERT as a potential universal target for selective and broad adoptive immunotherapy. TERT-specific cytotoxic T lymphocytes (CTL) have been detected in the peripheral blood of B-cell chronic lymphocytic leukemia (B-CLL) patients, but display low functional avidity, which limits their clinical utility in adoptive cell transfer approaches. To overcome this key obstacle hindering effective immunotherapy, we isolated an HLA-A2-restricted T-cell receptor (TCR) with high avidity for human TERT from vaccinated HLA-A*0201 transgenic mice. Using several relevant humanized mouse models, we demonstrate that TCR-transduced T cells were able to control human B-CLL progression in vivo and limited tumor growth in several human, solid transplantable cancers. TERT-based adoptive immunotherapy selectively eliminated tumor cells, failed to trigger a self-MHC-restricted fratricide of T cells, and was associated with toxicity against mature granulocytes, but not toward human hematopoietic progenitors in humanized immune reconstituted mice. These data support the feasibility of TERT-based adoptive immunotherapy in clinical oncology, highlighting, for the first time, the possibility of utilizing a high-avidity TCR specific for human TERT.

Feasibility of telomerase-specific adoptive T-cell therapy for B-cell chronic lymphocytic leukemia and solid malignancies

LAMOLINARA, ALESSIA;IEZZI, MANUELA;
2016-01-01

Abstract

Telomerase (TERT) is overexpressed in 80% to 90% of primary tumors and contributes to sustaining the transformed phenotype. The identification of several TERT epitopes in tumor cells has elevated the status of TERT as a potential universal target for selective and broad adoptive immunotherapy. TERT-specific cytotoxic T lymphocytes (CTL) have been detected in the peripheral blood of B-cell chronic lymphocytic leukemia (B-CLL) patients, but display low functional avidity, which limits their clinical utility in adoptive cell transfer approaches. To overcome this key obstacle hindering effective immunotherapy, we isolated an HLA-A2-restricted T-cell receptor (TCR) with high avidity for human TERT from vaccinated HLA-A*0201 transgenic mice. Using several relevant humanized mouse models, we demonstrate that TCR-transduced T cells were able to control human B-CLL progression in vivo and limited tumor growth in several human, solid transplantable cancers. TERT-based adoptive immunotherapy selectively eliminated tumor cells, failed to trigger a self-MHC-restricted fratricide of T cells, and was associated with toxicity against mature granulocytes, but not toward human hematopoietic progenitors in humanized immune reconstituted mice. These data support the feasibility of TERT-based adoptive immunotherapy in clinical oncology, highlighting, for the first time, the possibility of utilizing a high-avidity TCR specific for human TERT.
File in questo prodotto:
File Dimensione Formato  
Sandri 2016 2540.full.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: PDF editoriale
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/675056
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact