Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS) characterized by demyelination and neurodegeneration, driven by a Th17/Th1-immune response, which afflicts mainly young women. Although MS causes are not completely known, it is notorious that the disease is characterized by an extended focal degradation of the myelin sheath, with ulterior axon and neuronal damage. Lipid molecules play a main dual role in MS, both as target molecules of myelin destruction and as mediators of inflammation. Indeed, recent cumulative evidence suggests that abnormalities in the lipid- binding proteins of myelin and sphingolipid content that confer increased immunogenicity may underlie the autoimmune response against the myelin sheath. CNS is after all, the second organ richer on lipid content after adipose tissue. On the other hand, soluble factors called adipokines, secreted by adipose tissue, modulate inflammatory responses and contribute to metabolic dysfunction, which may be important in MS pathophysiology. Disability accumu- lation in MS patients is slow but persistent, often leading to a decreased mobility and physical activity, resulting in more weakness, fatigue and associated increased risk of the metabolic syndrome (MetS). In turn, MetS may trigger MS in susceptible individuals and is a worse prognostic factor. Here we review what are the facts linking lipids, MetS and MS, what we do not know yet, and what we should do to move this field forward.

Lipids at the Cross-Road of Autoimmunity in Multiple Sclerosis

Reale, Marcella;Sanchez-Ramon, Silvia
2017-01-01

Abstract

Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS) characterized by demyelination and neurodegeneration, driven by a Th17/Th1-immune response, which afflicts mainly young women. Although MS causes are not completely known, it is notorious that the disease is characterized by an extended focal degradation of the myelin sheath, with ulterior axon and neuronal damage. Lipid molecules play a main dual role in MS, both as target molecules of myelin destruction and as mediators of inflammation. Indeed, recent cumulative evidence suggests that abnormalities in the lipid- binding proteins of myelin and sphingolipid content that confer increased immunogenicity may underlie the autoimmune response against the myelin sheath. CNS is after all, the second organ richer on lipid content after adipose tissue. On the other hand, soluble factors called adipokines, secreted by adipose tissue, modulate inflammatory responses and contribute to metabolic dysfunction, which may be important in MS pathophysiology. Disability accumu- lation in MS patients is slow but persistent, often leading to a decreased mobility and physical activity, resulting in more weakness, fatigue and associated increased risk of the metabolic syndrome (MetS). In turn, MetS may trigger MS in susceptible individuals and is a worse prognostic factor. Here we review what are the facts linking lipids, MetS and MS, what we do not know yet, and what we should do to move this field forward.
File in questo prodotto:
File Dimensione Formato  
Proof Sánchez-Ramón-MS.pdf

Solo gestori archivio

Tipologia: Documento in Pre-print
Dimensione 782.67 kB
Formato Adobe PDF
782.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/675495
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact