T-cell homeostasis is regulated by several molecules; among these, interleukin (IL)-7 plays an essential role in the survival and homeostatic proliferation of peripheral naive T cells. In a previous study, we investigated whether human mesenchymal stromal cells (MSCs) could be engineered with the IL-7 gene to produce functional level of this cytokine. In the present study, we analyzed the impact of different quantities of IL-7 produced by MSCs on the survival and proliferation of a negative immunoselected naive (CD3(+)/CD45RA(+)) T-cell population. Co-cultivation of peripheral naive T cells with MSCs producing low (16 pg/mL) or high (1000 pg/mL) IL-7 levels or in the presence of exogenous IL-7 (0.01 ng/mL and 100 ng/mL) maintained the CD3(+)/CD45RA(+) naive T-cell phenotype. Chemokine receptor CCR7(+) expression was also maintained among this T-cell population. Naive T-cell molecular characteristics were maintained as assessed by the V beta spectra-typing complexity score, which showed the maintenance of a broad T-cell repertoire. No Th1 or Th2 differentiation was observed, as assessed by interferon-gamma or IL-4 accumulation. In contrast, only MSCs producing high amounts of IL-7 caused increased activation (CD25 31.2% +/- 12% vs 10% +/- 3.5%; P <.05), proliferation (CD71 17.8 +/- 7% vs 9.3% +/- 3, P <.05), apoptosis (assessed by annexin V: 18.6% +/- 5% vs 14.9% +/- 2.6%; P >.05), and the phase S cell cycle (15% vs 6.9%, P >.05). Exogenous IL-7 exhibited no significant effect. In conclusion, we demonstrated that IL-7 produced by MSCs has a dose-independent effect on naive T-cell survival while exerting a dose-dependent effect on activation/proliferation. Due to the continuous production of IL-7 by engineered cells, our system is more efficacious than exogenous IL-7.

Interleukin-7-Engineered Mesenchymal Cells: In Vitro Effects on Naive T-Cell Population

DI IANNI, MAURO
2006-01-01

Abstract

T-cell homeostasis is regulated by several molecules; among these, interleukin (IL)-7 plays an essential role in the survival and homeostatic proliferation of peripheral naive T cells. In a previous study, we investigated whether human mesenchymal stromal cells (MSCs) could be engineered with the IL-7 gene to produce functional level of this cytokine. In the present study, we analyzed the impact of different quantities of IL-7 produced by MSCs on the survival and proliferation of a negative immunoselected naive (CD3(+)/CD45RA(+)) T-cell population. Co-cultivation of peripheral naive T cells with MSCs producing low (16 pg/mL) or high (1000 pg/mL) IL-7 levels or in the presence of exogenous IL-7 (0.01 ng/mL and 100 ng/mL) maintained the CD3(+)/CD45RA(+) naive T-cell phenotype. Chemokine receptor CCR7(+) expression was also maintained among this T-cell population. Naive T-cell molecular characteristics were maintained as assessed by the V beta spectra-typing complexity score, which showed the maintenance of a broad T-cell repertoire. No Th1 or Th2 differentiation was observed, as assessed by interferon-gamma or IL-4 accumulation. In contrast, only MSCs producing high amounts of IL-7 caused increased activation (CD25 31.2% +/- 12% vs 10% +/- 3.5%; P <.05), proliferation (CD71 17.8 +/- 7% vs 9.3% +/- 3, P <.05), apoptosis (assessed by annexin V: 18.6% +/- 5% vs 14.9% +/- 2.6%; P >.05), and the phase S cell cycle (15% vs 6.9%, P >.05). Exogenous IL-7 exhibited no significant effect. In conclusion, we demonstrated that IL-7 produced by MSCs has a dose-independent effect on naive T-cell survival while exerting a dose-dependent effect on activation/proliferation. Due to the continuous production of IL-7 by engineered cells, our system is more efficacious than exogenous IL-7.
File in questo prodotto:
File Dimensione Formato  
Biol Blood Marrow Trans_2006.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 918.87 kB
Formato Adobe PDF
918.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/676454
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact