Alpha (8–12 Hz) power desynchronization is strongly associated to visual perception but has been observed in a large variety of tasks, indicating a general role in task anticipation. We previously reported in human observers that interference by repetitive transcranial magnetic stimulation (rTMS) of core regions of the dorsal attention network (DAN) disrupts both anticipatory alpha desynchronization and performance during a visuospatial attention (VSA) task. Here, we test the hypothesis that alpha desynchronization is task specific, and can be selectively modulated by interfering with activity in different higher-order parietal regions. We contrast the effects of rTMS on alpha rhythms and behavior on 2 different tasks: a VSA and a semantic decision task, by targeting the posterior intraparietal sulcus (pIPS), a core region of the DAN, or the angular gyrus (AG), a core region of the default mode network (DMN). We found that both performance and anticipatory alpha desynchronization were affected by stimulation of IPS only during VSA, and of AG only during semantic decisions. These findings indicate the existence of multiple dedicated parietal channels for the modulation of anticipatory alpha rhythms, which in turn reflect task-specific modulation of excitability in human parieto-occipital cortex.

Task and Regions Specific Top-Down Modulation of Alpha Rhythms in Parietal Cortex

CAPOTOSTO, PAOLO
Primo
;
BALDASSARRE, ANTONELLO
Secondo
;
SESTIERI, CARLO;SPADONE, SARA;ROMANI, Gian Luca
Penultimo
;
2017

Abstract

Alpha (8–12 Hz) power desynchronization is strongly associated to visual perception but has been observed in a large variety of tasks, indicating a general role in task anticipation. We previously reported in human observers that interference by repetitive transcranial magnetic stimulation (rTMS) of core regions of the dorsal attention network (DAN) disrupts both anticipatory alpha desynchronization and performance during a visuospatial attention (VSA) task. Here, we test the hypothesis that alpha desynchronization is task specific, and can be selectively modulated by interfering with activity in different higher-order parietal regions. We contrast the effects of rTMS on alpha rhythms and behavior on 2 different tasks: a VSA and a semantic decision task, by targeting the posterior intraparietal sulcus (pIPS), a core region of the DAN, or the angular gyrus (AG), a core region of the default mode network (DMN). We found that both performance and anticipatory alpha desynchronization were affected by stimulation of IPS only during VSA, and of AG only during semantic decisions. These findings indicate the existence of multiple dedicated parietal channels for the modulation of anticipatory alpha rhythms, which in turn reflect task-specific modulation of excitability in human parieto-occipital cortex.
File in questo prodotto:
File Dimensione Formato  
2017-Cereb. Cortex.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: PDF editoriale
Dimensione 286.07 kB
Formato Adobe PDF
286.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11564/678752
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 26
social impact