Objective: This study was designed to evaluate whether the adjunct of human telomerase RNA component (hTERC) fluorescence in situ hybridization (FISH) analysis to cytological diagnosis and human papillomavirus (HPV)-DNA testing may serve as a predictive marker for distinguishing cervical lesions destined to regress from those at high risk of progression towards invasive cancer. Study Design: hTERC FISH analysis was performed on 54 residual liquid-based cytology specimens obtained from women referred to colposcopy for the detection of atypical squamous cells of undetermined significance or worse (ASCUS+) lesions. Histological diagnosis was considered the gold standard and cervical intraepithelial neoplasia of grade 2 or worse (CIN2+) as the worst outcome. Results: Oncogenic HPV-DNA was found in 96.3% of the specimens. Among these, 38.5% revealed a CIN2+ diagnosis. hTERC gene amplification was detected in 37% of the cases; among these, 70% showed up as CIN2+. hTERC FISH analysis significantly improves the specificity and positive predictive value of HPV-DNA testing, thus differentiating patients with a CIN2+ diagnosis from those with a CIN2diagnosis. Conclusions: Despite the limitation of a small study sample, our findings provide promising data, indicating the possible role of hTERC analysis in the assessment of the risk of developing cervical cancer. This approach would implement the specificity of DNA testing, avoiding overtreatment at the same time. Prospective follow-up studies are needed with the aim of introducing hTERC FISH into decision- making algorithms.
Clinical Role of the Detection of Human Telomerase RNA Component Gene Amplification by Fluorescence in situ Hybridization on Liquid-Based Cervical Samples: Comparison with Human Papillomavirus-DNA Testing and Histopathology
ZAPPACOSTA, ROBERTA;IANIERI, MANUEL MARIA;BUCA, DANILO ITALO PIO;LIBERATI, Marco
2015-01-01
Abstract
Objective: This study was designed to evaluate whether the adjunct of human telomerase RNA component (hTERC) fluorescence in situ hybridization (FISH) analysis to cytological diagnosis and human papillomavirus (HPV)-DNA testing may serve as a predictive marker for distinguishing cervical lesions destined to regress from those at high risk of progression towards invasive cancer. Study Design: hTERC FISH analysis was performed on 54 residual liquid-based cytology specimens obtained from women referred to colposcopy for the detection of atypical squamous cells of undetermined significance or worse (ASCUS+) lesions. Histological diagnosis was considered the gold standard and cervical intraepithelial neoplasia of grade 2 or worse (CIN2+) as the worst outcome. Results: Oncogenic HPV-DNA was found in 96.3% of the specimens. Among these, 38.5% revealed a CIN2+ diagnosis. hTERC gene amplification was detected in 37% of the cases; among these, 70% showed up as CIN2+. hTERC FISH analysis significantly improves the specificity and positive predictive value of HPV-DNA testing, thus differentiating patients with a CIN2+ diagnosis from those with a CIN2diagnosis. Conclusions: Despite the limitation of a small study sample, our findings provide promising data, indicating the possible role of hTERC analysis in the assessment of the risk of developing cervical cancer. This approach would implement the specificity of DNA testing, avoiding overtreatment at the same time. Prospective follow-up studies are needed with the aim of introducing hTERC FISH into decision- making algorithms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.