The combined approach of mesenchymal stem cells (MSCs) and scaffolds has been proposed as a potential therapeutic tool for the treatment of neurodegenerative diseases. Indeed, even if MSCs can promote neuronal regeneration, replacing lost neurons or secreting neurotrophic factors, many limitations still exist for their application in regenerative medicine, including the low survival and differentiation rate. The scaffolds, by mimicking the endogenous microenvironment, have shown to promote cell survival, proliferation, and differentiation. In this work, gingival mesenchymal stem cells (GMSCs), isolated from healthy donors, were expanded in vitro, by culturing them adherent in plastic dishes (CTR-GMSCs) or on a poly(lactic acid) scaffold (SC-GMSCs). In order to evaluate the survival and the neurogenic differentiation potential, we performed a comparative transcriptomic analysis between CTR-GMSCs and SC-GMSCs by next generation sequencing. We found that SC-GMSCs showed an increased expression of neurogenic and prosurvival genes. In particular, genes involved in neurotrophin signaling and PI3K/Akt pathways were upregulated. On the contrary, proapoptotic and negative regulator of neuronal growth genes were downregulated. Moreover, nestin and GAP-43 protein levels increased in SC-GMSCs, confirming the neurogenic commitment of these cells. In conclusion, the scaffold, providing a trophic support for MSCs, may promote GMSCs differentiation toward a neuronal phenotype and survival. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 126–137, 2018. © 2017 Wiley Periodicals, Inc.

Transcriptomic analysis of gingival mesenchymal stem cells cultured on 3D bioprinted scaffold: A promising strategy for neuroregeneration

Diomede, Francesca
Secondo
;
Trubiani, Oriana
Penultimo
;
2018-01-01

Abstract

The combined approach of mesenchymal stem cells (MSCs) and scaffolds has been proposed as a potential therapeutic tool for the treatment of neurodegenerative diseases. Indeed, even if MSCs can promote neuronal regeneration, replacing lost neurons or secreting neurotrophic factors, many limitations still exist for their application in regenerative medicine, including the low survival and differentiation rate. The scaffolds, by mimicking the endogenous microenvironment, have shown to promote cell survival, proliferation, and differentiation. In this work, gingival mesenchymal stem cells (GMSCs), isolated from healthy donors, were expanded in vitro, by culturing them adherent in plastic dishes (CTR-GMSCs) or on a poly(lactic acid) scaffold (SC-GMSCs). In order to evaluate the survival and the neurogenic differentiation potential, we performed a comparative transcriptomic analysis between CTR-GMSCs and SC-GMSCs by next generation sequencing. We found that SC-GMSCs showed an increased expression of neurogenic and prosurvival genes. In particular, genes involved in neurotrophin signaling and PI3K/Akt pathways were upregulated. On the contrary, proapoptotic and negative regulator of neuronal growth genes were downregulated. Moreover, nestin and GAP-43 protein levels increased in SC-GMSCs, confirming the neurogenic commitment of these cells. In conclusion, the scaffold, providing a trophic support for MSCs, may promote GMSCs differentiation toward a neuronal phenotype and survival. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 126–137, 2018. © 2017 Wiley Periodicals, Inc.
File in questo prodotto:
File Dimensione Formato  
2018 Transcriptomic.pdf

Solo gestori archivio

Descrizione: Original Article
Tipologia: PDF editoriale
Dimensione 726.33 kB
Formato Adobe PDF
726.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/684605
Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 41
social impact