The tumor suppressor p14arf interacts, in response to oncogenic signals, with the p53 E3-ubiquitin ligase HDM2, thereby resulting in p53 stabilization and activation. In addition, it also exerts tumor-suppressive functions in p53-independent contexts. The activities of p14arf are regulated by the nucleolar chaperone nucleophosmin (NPM1), which controls its levels and cellular localization. In acute myeloid leukemia with mutations in the NPM1 gene, mutated NPM1 aberrantly translocates in the cytosol carrying with itself p14arf that is subsequently degraded, thus impairing the p14arf-HDM2-p53 axis. In this work we investigated the complex between these two proteins by means of NMR and other techniques. We identified a novel NPM1-interacting motif in the C-terminal region of p14arf, which corresponds to its predicted nucleolar localization signal. This motif recognizes a specific region of the NPM1 N-terminal domain and, upon binding, the two proteins form soluble high molecular weight complexes. By NMR, we identified critical residues on both proteins involved in the interaction. Collectively, our data provide a structural framework to rationalize the overall assembly of the p14arf-NPM1 supramolecular complexes. A number of p14arf cancer-associated mutations cluster in this motif and their effect on the interaction with NPM1 was also analyzed.

Identification of a novel nucleophosmin-interaction motif in the tumor suppressor p14arf

Chiarella, Sara;Franceschini, Mimma;Federici, Luca
2018-01-01

Abstract

The tumor suppressor p14arf interacts, in response to oncogenic signals, with the p53 E3-ubiquitin ligase HDM2, thereby resulting in p53 stabilization and activation. In addition, it also exerts tumor-suppressive functions in p53-independent contexts. The activities of p14arf are regulated by the nucleolar chaperone nucleophosmin (NPM1), which controls its levels and cellular localization. In acute myeloid leukemia with mutations in the NPM1 gene, mutated NPM1 aberrantly translocates in the cytosol carrying with itself p14arf that is subsequently degraded, thus impairing the p14arf-HDM2-p53 axis. In this work we investigated the complex between these two proteins by means of NMR and other techniques. We identified a novel NPM1-interacting motif in the C-terminal region of p14arf, which corresponds to its predicted nucleolar localization signal. This motif recognizes a specific region of the NPM1 N-terminal domain and, upon binding, the two proteins form soluble high molecular weight complexes. By NMR, we identified critical residues on both proteins involved in the interaction. Collectively, our data provide a structural framework to rationalize the overall assembly of the p14arf-NPM1 supramolecular complexes. A number of p14arf cancer-associated mutations cluster in this motif and their effect on the interaction with NPM1 was also analyzed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/684714
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact