The notion of exchangeability referring to random events is investigated by using a geometric scheme of representation of possible alternatives. When we distribute among them our sensations of probability, we point out the multilinear essence of exchangeability by means of this scheme. Since we observe a natural one-to-one correspondence between multilinear maps and linear maps, we are able to underline that linearity concept is the most meaningful mathematical concept of probability theory. Exchangeability hypothesis is maintained for mixtures of Bernoulli processes in the same way. We are the first in the world to do this kind of work and for this reason we believe that it is inevitable that our references limit themselves only to those pioneering works which do not keep the real and deep meaning of probability concept a secret, unlike the current ones.

On a Geometric Extension of the Notion of Exchangeability Referring to Random Events

De Sanctis, Angela
2018-01-01

Abstract

The notion of exchangeability referring to random events is investigated by using a geometric scheme of representation of possible alternatives. When we distribute among them our sensations of probability, we point out the multilinear essence of exchangeability by means of this scheme. Since we observe a natural one-to-one correspondence between multilinear maps and linear maps, we are able to underline that linearity concept is the most meaningful mathematical concept of probability theory. Exchangeability hypothesis is maintained for mixtures of Bernoulli processes in the same way. We are the first in the world to do this kind of work and for this reason we believe that it is inevitable that our references limit themselves only to those pioneering works which do not keep the real and deep meaning of probability concept a secret, unlike the current ones.
File in questo prodotto:
File Dimensione Formato  
On_a_Geometric_Extension_of_the_Notion_of_Exchange.pdf

Solo gestori archivio

Tipologia: Documento in Post-print
Dimensione 62.41 kB
Formato Adobe PDF
62.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/689260
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact