Type I interferon (IFN-I) is a class of antiviral immunomodulatory cytokines involved in many stages of tumor initiation and progression. IFN-I acts directly on tumor cells to inhibit cell growth, and indirectly by activating immune cells to mount antitumor responses. To understand the role of endogenous IFN-I in spontaneous, oncogene-driven carcinogenesis, we characterized tumors arising in Her2/neu transgenic (neuT) mice carrying a nonfunctional mutation in the IFN-I receptor (IFNAR1). Such mice are unresponsive to this family of cytokines. Compared to parental neu+/- mice (neuT mice), IFNAR1-/- neu+/- mice (IFNAR-neuT mice) showed earlier onset and increased tumor multiplicity with marked vascularization. IFNAR-neuT tumors exhibited deregulation of genes having adverse prognostic value in breast cancer patients, including the breast cancer stem cell (BCSC) marker aldehyde dehydrogenase-1A1 (ALDH1A1). An increased number of BCSCs were observed in IFNAR-neuT tumors, as assessed by ALDH1A1 enzymatic activity, clonogenic assay, and tumorigenic capacity. In vitro exposure of neuT+ mammospheres and cell lines to antibodies to IFN-I resulted in increased frequency of ALDH+ cells, suggesting that IFN-I controls stemness in tumor cells. Altogether, these results reveal a role of IFN-I in NeuT-driven spontaneous carcinogenesis through intrinsic control of BCSCs.

Disruption of IFN-I signaling promotes HER2/neu tumor progression and breast cancer stem cells

Iezzi, Manuela;Lamolinara, Alessia;
2018-01-01

Abstract

Type I interferon (IFN-I) is a class of antiviral immunomodulatory cytokines involved in many stages of tumor initiation and progression. IFN-I acts directly on tumor cells to inhibit cell growth, and indirectly by activating immune cells to mount antitumor responses. To understand the role of endogenous IFN-I in spontaneous, oncogene-driven carcinogenesis, we characterized tumors arising in Her2/neu transgenic (neuT) mice carrying a nonfunctional mutation in the IFN-I receptor (IFNAR1). Such mice are unresponsive to this family of cytokines. Compared to parental neu+/- mice (neuT mice), IFNAR1-/- neu+/- mice (IFNAR-neuT mice) showed earlier onset and increased tumor multiplicity with marked vascularization. IFNAR-neuT tumors exhibited deregulation of genes having adverse prognostic value in breast cancer patients, including the breast cancer stem cell (BCSC) marker aldehyde dehydrogenase-1A1 (ALDH1A1). An increased number of BCSCs were observed in IFNAR-neuT tumors, as assessed by ALDH1A1 enzymatic activity, clonogenic assay, and tumorigenic capacity. In vitro exposure of neuT+ mammospheres and cell lines to antibodies to IFN-I resulted in increased frequency of ALDH+ cells, suggesting that IFN-I controls stemness in tumor cells. Altogether, these results reveal a role of IFN-I in NeuT-driven spontaneous carcinogenesis through intrinsic control of BCSCs.
File in questo prodotto:
File Dimensione Formato  
disruption of IFN-1 signaling.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: PDF editoriale
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/691991
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact