We introduce a class of local likelihood circular density estimators, which includes the kernel density estimator as a special case. The idea lies in optimizing a spatially weighted version of the log-likelihood function, where the logarithm of the density is locally approximated by a periodic polynomial. The use of von Mises density functions as weights reduces the computational burden. Also, we propose closed-form estimators which could form the basis of counterparts in the multidimensional Euclidean setting. Simulation results and a real data case study are used to evaluate the performance and illustrate the results.

Circular local likelihood

Di Marzio, Marco;FENSORE, STEFANIA;
2018-01-01

Abstract

We introduce a class of local likelihood circular density estimators, which includes the kernel density estimator as a special case. The idea lies in optimizing a spatially weighted version of the log-likelihood function, where the logarithm of the density is locally approximated by a periodic polynomial. The use of von Mises density functions as weights reduces the computational burden. Also, we propose closed-form estimators which could form the basis of counterparts in the multidimensional Euclidean setting. Simulation results and a real data case study are used to evaluate the performance and illustrate the results.
File in questo prodotto:
File Dimensione Formato  
Marzio2018_Article_CircularLocalLikelihood (1).pdf

Solo gestori archivio

Tipologia: Documento in Post-print
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
loclik179.pdf

accesso aperto

Tipologia: Documento in Pre-print
Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/695644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact