The high-temperature (33–98 °C), highly acidic (pH 2.44–2.94) Goshogake mud volcano field in Akita Prefecture, northern Japan, is a mud volcano system associated with the Quaternary andesitic composite volcano Akita Yakeyama. The mud volcano features observed in Goshogake include salsa ponds, gryphons, and mud pots. This is a rare example of mud volcano systems linked with magmatic volcanism with the full range of landforms observed primarily in low-temperature mud volcanism in sedimentary settings. The Goshogake mud volcano field is probably not a simple hydrothermal system related to a magmatic volcano. Instead, it appears to be a hybrid system: sedimentary volcanism linked with deep mud sources and strongly influenced by its surrounding magmatic volcanism. The identified mineral species in the sampled mud include quartz group, hydrous silica, muscovite, kaolinite, pyrite, and sulfur. The presence of high-temperature silica polymorphs (tridymite and cristobalite) and/or microcrystalline opals (opal-C, opal-CT), and an amorphous form of silica (opal-A) in the mineralogy indicates that the mud volcano system likely involves conditions and processes such as high temperature, hydrothermal circulation, dehydration reaction at certain depths underneath the Goshogake mud volcano field. Although the source of the mud is not clearly determined, possible options include 1) hydrothermal alteration products of host rocks and sediments, 2) fine-grained sedimentary layer(s) at depth, or 3) a combination of 1) and 2). In-situ measurement of emitted gases from vents detected methane, which is possibly linked with the organic-rich sedimentary layer(s) aside from being a product of thermodynamic equilibrium with CO2 under the subsurface pressure-temperature conditions. The increases in δD and δ18O of water in Goshogake mud volcanoes with respect to the values of current meteoric water indicates that the water was derived not only from meteoric water, and deviation of the values may be explained by processes such as evaporation and mixing of other waters from deeper sources. Regarding the driving mechanisms at the Goshogake mud volcanoes, buoyancy of muddy sediment, high fluid pressure under overpressured or under-compacted conditions due to rapid sedimentation, together with the presence of a gas phase in the sediment, could be key factors. Although the Goshogake mud volcano field currently maintains a low-level activity resulting in only minor morphological changes of the mud volcano landforms, enhanced activities have been documented in the last half century. The historical records are inconclusive about the relationship between earthquakes and activity in the Goshogake mud volcano field.
The Goshogake mud volcano field, Tohoku, northern Japan: An acidic, high-temperature system related to magmatic volcanism
Komatsu G.
;
2019-01-01
Abstract
The high-temperature (33–98 °C), highly acidic (pH 2.44–2.94) Goshogake mud volcano field in Akita Prefecture, northern Japan, is a mud volcano system associated with the Quaternary andesitic composite volcano Akita Yakeyama. The mud volcano features observed in Goshogake include salsa ponds, gryphons, and mud pots. This is a rare example of mud volcano systems linked with magmatic volcanism with the full range of landforms observed primarily in low-temperature mud volcanism in sedimentary settings. The Goshogake mud volcano field is probably not a simple hydrothermal system related to a magmatic volcano. Instead, it appears to be a hybrid system: sedimentary volcanism linked with deep mud sources and strongly influenced by its surrounding magmatic volcanism. The identified mineral species in the sampled mud include quartz group, hydrous silica, muscovite, kaolinite, pyrite, and sulfur. The presence of high-temperature silica polymorphs (tridymite and cristobalite) and/or microcrystalline opals (opal-C, opal-CT), and an amorphous form of silica (opal-A) in the mineralogy indicates that the mud volcano system likely involves conditions and processes such as high temperature, hydrothermal circulation, dehydration reaction at certain depths underneath the Goshogake mud volcano field. Although the source of the mud is not clearly determined, possible options include 1) hydrothermal alteration products of host rocks and sediments, 2) fine-grained sedimentary layer(s) at depth, or 3) a combination of 1) and 2). In-situ measurement of emitted gases from vents detected methane, which is possibly linked with the organic-rich sedimentary layer(s) aside from being a product of thermodynamic equilibrium with CO2 under the subsurface pressure-temperature conditions. The increases in δD and δ18O of water in Goshogake mud volcanoes with respect to the values of current meteoric water indicates that the water was derived not only from meteoric water, and deviation of the values may be explained by processes such as evaporation and mixing of other waters from deeper sources. Regarding the driving mechanisms at the Goshogake mud volcanoes, buoyancy of muddy sediment, high fluid pressure under overpressured or under-compacted conditions due to rapid sedimentation, together with the presence of a gas phase in the sediment, could be key factors. Although the Goshogake mud volcano field currently maintains a low-level activity resulting in only minor morphological changes of the mud volcano landforms, enhanced activities have been documented in the last half century. The historical records are inconclusive about the relationship between earthquakes and activity in the Goshogake mud volcano field.File | Dimensione | Formato | |
---|---|---|---|
Goshogake_MV_geology_2019.pdf
Solo gestori archivio
Tipologia:
PDF editoriale
Dimensione
9.27 MB
Formato
Adobe PDF
|
9.27 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.