Defective expression of frataxin is responsible for the degenerative disease Friedreich's ataxia. Frataxin is a protein required for cell survival since complete knockout is lethal. Frataxin protects tumor cells against oxidative stress and apoptosis but also acts as a tumor suppressor. The molecular bases of this apparent paradox are missing. We therefore sought to investigate the pathways through which frataxin enhances stress resistance in tumor cells. We found that frataxin expression is upregulated in several tumor cell lines in response to hypoxic stress, a condition often associated with tumor progression. Moreover, frataxin upregulation in response to hypoxia is dependent on hypoxia-inducible factors expression and modulates the activation of the tumor-suppressor p53. Importantly, we show for the first time that frataxin is in fact increased in human tumors in vivo. These results show that frataxin participates to the hypoxia-induced stress response in tumors, thus implying that modulation of its expression could have a critical role in tumor cell survival and/or progression.
Frataxin participates to the hypoxia-induced response in tumors
Mangiola, A.;
2011-01-01
Abstract
Defective expression of frataxin is responsible for the degenerative disease Friedreich's ataxia. Frataxin is a protein required for cell survival since complete knockout is lethal. Frataxin protects tumor cells against oxidative stress and apoptosis but also acts as a tumor suppressor. The molecular bases of this apparent paradox are missing. We therefore sought to investigate the pathways through which frataxin enhances stress resistance in tumor cells. We found that frataxin expression is upregulated in several tumor cell lines in response to hypoxic stress, a condition often associated with tumor progression. Moreover, frataxin upregulation in response to hypoxia is dependent on hypoxia-inducible factors expression and modulates the activation of the tumor-suppressor p53. Importantly, we show for the first time that frataxin is in fact increased in human tumors in vivo. These results show that frataxin participates to the hypoxia-induced stress response in tumors, thus implying that modulation of its expression could have a critical role in tumor cell survival and/or progression.File | Dimensione | Formato | |
---|---|---|---|
cddis20115.pdf
accesso aperto
Descrizione: Article
Tipologia:
PDF editoriale
Dimensione
866.17 kB
Formato
Adobe PDF
|
866.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.