Infusions, decoctions and tinctures were prepared from flowers of Butea monosperma (Lam.) Taub. and Sesbania grandiflora (L.) Poiret and evaluated for in vitro inhibition of enzymes implicated on the onset of neurological diseases (acetylcholinesterase: AChE and butyrylcholinesterase: BuChE), diabetes (alpha-glucosidase and alpha-amylase), obesity (lipase) and skin hyperpigmentation (tyrosinase). Extracts were also appraised for radical scavenging activity (RSA) on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, and for metal chelating activity on copper and iron ions. Samples were evaluated for their total contents in different phenolics groups by spectrophotometric methods, for phenolic profile by high performance liquid chromatography e diode array detection (HPLC-DAD) and for mineral contents by microwave plasma-atomic emission spectrometry (MP-AE). Regarding B. monosperma, the tincture allowed for a moderate inhibition of AChE, the decoction was able to inhibit alpha-glucosidase and no activity was observed towards BuChE, alpha-amylase or lipase. All extracts had a low or moderate inhibition towards tyrosinase, and significant RSA and metal chelating potential. As for S. grandiflora, only the decoction inhibited AChE, none of the extracts was able to inhibit BuChE, all samples inhibited alpha-glucosidase and infusions and decoctions had similar inhibitory properties towards alpha-amylase. None of the extracts was active against lipase, but all were able to inhibit tyrosinase. Extracts had also significant RSA, moderate copper chelation and decoctions had the capacity to chelate iron. The most abundant macroelements in both species were potassium and calcium, while iron was the prevalent microelement, especially in B. monosperma. Both species had significant levels of phenolic compounds, and the main components in decoctions and infusions of B. monosperma were syringic and salicylic acids, while the major compound identified in tinctures was the flavonoid luteolin-7-O-glucoside. In S. grandiflora the most abundant were chlorogenic and neochlorogenic acids and catechin hydrate. Molecular docking studies on the most abundant molecules in S. grandiflora, (+)-catechin, chlorogenic acid and neochlorogenic acid, indicate that these compounds are able to dock to alpha-glucosidase in a similar manner than acarbose. Our results suggest that flowers of both species are a promising source of high value-added compounds with enzyme inhibitory and antioxidant properties. (c) 2018 SAAB. Published by Elsevier B.V. All rights reserved.

A comparative study of the in vitro enzyme inhibitory and antioxidant activities of Butea monosperma (Lam.) Taub. and Sesbania grandiflora (L.) Poiret from Pakistan: New sources of natural products for public health problems

AHMED, HANAA MOHAMED ABDELMONEM YUOSSEF;Mollica, Adriano.;
2019-01-01

Abstract

Infusions, decoctions and tinctures were prepared from flowers of Butea monosperma (Lam.) Taub. and Sesbania grandiflora (L.) Poiret and evaluated for in vitro inhibition of enzymes implicated on the onset of neurological diseases (acetylcholinesterase: AChE and butyrylcholinesterase: BuChE), diabetes (alpha-glucosidase and alpha-amylase), obesity (lipase) and skin hyperpigmentation (tyrosinase). Extracts were also appraised for radical scavenging activity (RSA) on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, and for metal chelating activity on copper and iron ions. Samples were evaluated for their total contents in different phenolics groups by spectrophotometric methods, for phenolic profile by high performance liquid chromatography e diode array detection (HPLC-DAD) and for mineral contents by microwave plasma-atomic emission spectrometry (MP-AE). Regarding B. monosperma, the tincture allowed for a moderate inhibition of AChE, the decoction was able to inhibit alpha-glucosidase and no activity was observed towards BuChE, alpha-amylase or lipase. All extracts had a low or moderate inhibition towards tyrosinase, and significant RSA and metal chelating potential. As for S. grandiflora, only the decoction inhibited AChE, none of the extracts was able to inhibit BuChE, all samples inhibited alpha-glucosidase and infusions and decoctions had similar inhibitory properties towards alpha-amylase. None of the extracts was active against lipase, but all were able to inhibit tyrosinase. Extracts had also significant RSA, moderate copper chelation and decoctions had the capacity to chelate iron. The most abundant macroelements in both species were potassium and calcium, while iron was the prevalent microelement, especially in B. monosperma. Both species had significant levels of phenolic compounds, and the main components in decoctions and infusions of B. monosperma were syringic and salicylic acids, while the major compound identified in tinctures was the flavonoid luteolin-7-O-glucoside. In S. grandiflora the most abundant were chlorogenic and neochlorogenic acids and catechin hydrate. Molecular docking studies on the most abundant molecules in S. grandiflora, (+)-catechin, chlorogenic acid and neochlorogenic acid, indicate that these compounds are able to dock to alpha-glucosidase in a similar manner than acarbose. Our results suggest that flowers of both species are a promising source of high value-added compounds with enzyme inhibitory and antioxidant properties. (c) 2018 SAAB. Published by Elsevier B.V. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
South Afr J Bor 2019 Mollica.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/702185
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact