We discuss local regression estimators when the predictor lies on the -dimensional sphere and the response is binary. Despite Di Marzio et al. (2018b), who introduce spherical kernel density classification, we build on the theory of local polynomial regression and local likelihood. Simulations and a real-data application illustrate the effectiveness of the proposals.
Local binary regression with spherical predictors
Di Marzio, Marco
;Fensore, Stefania;
2019-01-01
Abstract
We discuss local regression estimators when the predictor lies on the -dimensional sphere and the response is binary. Despite Di Marzio et al. (2018b), who introduce spherical kernel density classification, we build on the theory of local polynomial regression and local likelihood. Simulations and a real-data application illustrate the effectiveness of the proposals.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0167715218302633-main.pdf
Solo gestori archivio
Descrizione: Article
Tipologia:
PDF editoriale
Dimensione
435.11 kB
Formato
Adobe PDF
|
435.11 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
sphereclassB4.pdf
accesso aperto
Descrizione: Accepted Version
Tipologia:
Documento in Post-print
Dimensione
290.83 kB
Formato
Adobe PDF
|
290.83 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.