The hydrophilic graphene derivative, graphene oxide (GO), is used to synthesize free-standing GO foils characterized by cross-linked GO sheets with enhanced mechanical properties and no tendency to release GO flakes in aqueous solution. These GO foils do not evidence cytotoxic effects toward dental pulp stem cells (DPSC). Rather, DPSC viability is significantly increased for cells grown on GO foil and SEM analyses evidence the synthesis of a consistent extracellular matrix by DPSCs with respect to cells grown on polystyrene. Gene expression of osteogenic markers and alkaline phosphatase (ALP) activity tests demonstrate DPSC differentiation toward the osteoblastic lineage. Indeed RUNX2, a key transcriptor factor associated with osteogenic differentiation, as well as SP7, responsible for triggering bone matrix mineralization, are significantly augmented after 7 and 14 days of culture on GO foil with respect to the control, respectively, underlying the capability of GO foil to promote a potential faster and better DPSC differentiation with respect to cells grown on polystyrene. This increase of rate differentiation is confirmed by SEM analyses of DPSCs evidencing a consistent extracellular matrix synthesis at the earliest time of culture (i.e., 3 and 14 days)

Graphene Oxide Foils as an Osteoinductive Stem Cell Substrate

Di Crescenzo, Antonello
Primo
;
Zara, Susi;Di Nisio, Chiara;Ettorre, Valeria;VENTRELLA, ALESSIA;Di Profio, Pietro;Cataldi, Amelia;Fontana, Antonella
Ultimo
2019-01-01

Abstract

The hydrophilic graphene derivative, graphene oxide (GO), is used to synthesize free-standing GO foils characterized by cross-linked GO sheets with enhanced mechanical properties and no tendency to release GO flakes in aqueous solution. These GO foils do not evidence cytotoxic effects toward dental pulp stem cells (DPSC). Rather, DPSC viability is significantly increased for cells grown on GO foil and SEM analyses evidence the synthesis of a consistent extracellular matrix by DPSCs with respect to cells grown on polystyrene. Gene expression of osteogenic markers and alkaline phosphatase (ALP) activity tests demonstrate DPSC differentiation toward the osteoblastic lineage. Indeed RUNX2, a key transcriptor factor associated with osteogenic differentiation, as well as SP7, responsible for triggering bone matrix mineralization, are significantly augmented after 7 and 14 days of culture on GO foil with respect to the control, respectively, underlying the capability of GO foil to promote a potential faster and better DPSC differentiation with respect to cells grown on polystyrene. This increase of rate differentiation is confirmed by SEM analyses of DPSCs evidencing a consistent extracellular matrix synthesis at the earliest time of culture (i.e., 3 and 14 days)
File in questo prodotto:
File Dimensione Formato  
acs-mt_antiplagism.pdf

Open Access dal 09/03/2020

Tipologia: Documento in Post-print
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri
2019_ACSApplBioMater.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/702444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact