The increasing multidrug resistance in Helicobacter pylori, also correlated to its biofilm-forming ability, underlines the need to search novel strategies to improve the eradication rate. Natural compounds are proposed as antibiotic-resistant-breakers capable to restore the efficacy of conventional drugs. Aim of this work was to evaluate the capability of Pistacia vera L. oleoresin (ORS) to synergize with levofloxacin (LVX) against resistant H. pylori strains. The antimicrobial activity of P. vera L. ORS and LVX and their combinations was determined by MIC/MBC (in neutral and acidic environments) and checkerboard tests. The anti-biofilm effect was determined by biomass quantification. In vivo Galleria mellonella model was used to confirm in vitro data. Pistacia vera L. ORS and LVX MICs ranged respectively from 780 to 3120 mg/l and from 0.12 to 2.00 mg/l, at pH 7.0 and 5.5. MBCs were similar to MICs. Pistacia vera L. ORS was able to synergize with LVX, restoring its effectiveness in LVX resistant strains. Pistacia vera L. ORS, LVX and their synergistic combinations displayed significant biofilm reduction. Pistacia vera L. ORS and LVX, showed protective effect against H. pylori infection on G. mellonella (62% and 63% of survival, respectively). Pistacia vera L. ORS can be considered a promising potentiator to restore the effectiveness of LVX tackling the H. pylori antibiotic resistance phenomenon.

Pistacia vera L. oleoresin and levofloxacin is a synergistic combination against resistant Helicobacter pylori strains

Di Lodovico S.;Di Campli E.;Di Fermo P.;Cellini L.;Di Giulio M.
2019-01-01

Abstract

The increasing multidrug resistance in Helicobacter pylori, also correlated to its biofilm-forming ability, underlines the need to search novel strategies to improve the eradication rate. Natural compounds are proposed as antibiotic-resistant-breakers capable to restore the efficacy of conventional drugs. Aim of this work was to evaluate the capability of Pistacia vera L. oleoresin (ORS) to synergize with levofloxacin (LVX) against resistant H. pylori strains. The antimicrobial activity of P. vera L. ORS and LVX and their combinations was determined by MIC/MBC (in neutral and acidic environments) and checkerboard tests. The anti-biofilm effect was determined by biomass quantification. In vivo Galleria mellonella model was used to confirm in vitro data. Pistacia vera L. ORS and LVX MICs ranged respectively from 780 to 3120 mg/l and from 0.12 to 2.00 mg/l, at pH 7.0 and 5.5. MBCs were similar to MICs. Pistacia vera L. ORS was able to synergize with LVX, restoring its effectiveness in LVX resistant strains. Pistacia vera L. ORS, LVX and their synergistic combinations displayed significant biofilm reduction. Pistacia vera L. ORS and LVX, showed protective effect against H. pylori infection on G. mellonella (62% and 63% of survival, respectively). Pistacia vera L. ORS can be considered a promising potentiator to restore the effectiveness of LVX tackling the H. pylori antibiotic resistance phenomenon.
File in questo prodotto:
File Dimensione Formato  
Pistacia_s41598-019-40991-y.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/705023
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact