The structural engineering design of not conventional typologies imposes a complex path that begins evaluating procedures of a preliminary design and ends with complex procedures to validate the analysis response. Any guide lines to follow are often available. About complex shapes, in particular, any details are presented in the codes to evaluate wind action and so wind tunnel experiments are necessary to valuate this. The evaluation of wind tunnel data is a complex process that often needs new and specific subroutines programmed by researchers. The difficult increases when the objective is to study a not specific building but general aspects as for examples the dependence of a generic phenomenon by a geometric sample; in this case it is necessary to design and to program numerical subroutines before and then the wind tunnel experiments. Often, these subroutines are left detached and are non-generalizable process. Purpose of this paper is to describe a complete procedure to pre- and post-process wind tunnel data with the objective to design a not convectional structure as a tensile structure. In this particular case the research aim is a parametrization of the aerodynamic behavior of Hyperbolic Paraboloid roofs, shape used for cables net. The reason of the experiments is the absence in the international codes of the pressure coefficients for these geometries. The paper describes the numerical procedure evaluated to choose a sufficient representative geometric sample, the numerical procedure evaluated to design and to construct the wind tunnel models and FE models, the numerical procedure to evaluate and to use for FEM analyses of the wind tunnel data, the numerical procedure to calculate nonlinear structural analysis, and, finally some applications. All these numerical procedures use basic theory derived for example by the cable theory, the fluid mechanic, the nonlinear geometric analysis and other. However specific codes were necessary and were programmed to apply the theories on the specific case of study; the complete methodology followed is presented. The goal is to create a free open domain where the numerical procedures evaluated are merged, added, modified by researchers with the aim to obtain a common space of use for wind engineering of not conventional structure.

Tensile Structures of Cables Net, Guidelines to Design and Applications

fabio rizzo
2016-01-01

Abstract

The structural engineering design of not conventional typologies imposes a complex path that begins evaluating procedures of a preliminary design and ends with complex procedures to validate the analysis response. Any guide lines to follow are often available. About complex shapes, in particular, any details are presented in the codes to evaluate wind action and so wind tunnel experiments are necessary to valuate this. The evaluation of wind tunnel data is a complex process that often needs new and specific subroutines programmed by researchers. The difficult increases when the objective is to study a not specific building but general aspects as for examples the dependence of a generic phenomenon by a geometric sample; in this case it is necessary to design and to program numerical subroutines before and then the wind tunnel experiments. Often, these subroutines are left detached and are non-generalizable process. Purpose of this paper is to describe a complete procedure to pre- and post-process wind tunnel data with the objective to design a not convectional structure as a tensile structure. In this particular case the research aim is a parametrization of the aerodynamic behavior of Hyperbolic Paraboloid roofs, shape used for cables net. The reason of the experiments is the absence in the international codes of the pressure coefficients for these geometries. The paper describes the numerical procedure evaluated to choose a sufficient representative geometric sample, the numerical procedure evaluated to design and to construct the wind tunnel models and FE models, the numerical procedure to evaluate and to use for FEM analyses of the wind tunnel data, the numerical procedure to calculate nonlinear structural analysis, and, finally some applications. All these numerical procedures use basic theory derived for example by the cable theory, the fluid mechanic, the nonlinear geometric analysis and other. However specific codes were necessary and were programmed to apply the theories on the specific case of study; the complete methodology followed is presented. The goal is to create a free open domain where the numerical procedures evaluated are merged, added, modified by researchers with the aim to obtain a common space of use for wind engineering of not conventional structure.
File in questo prodotto:
File Dimensione Formato  
OJCE_2016033017065955.pdf

accesso aperto

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 12.88 MB
Formato Adobe PDF
12.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/707011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact