The oncogenic gammaherpesvirus Epstein-Barr virus (EBV) immortalizes in vitro B lymphocytes into lymphoblastoid cell lines (LCLs), a model that gives the opportunity to explore the molecular mechanisms driving viral tumorigenesis. In this study, we addressed the potential of quercetin, a widely distributed flavonoid displaying antioxidant, anti-inflammatory, and anti-cancer properties, in preventing EBV-driven B cell immortalization. The results obtained indicated that quercetin inhibited thectivation of signal transducer and activator of transcription 3 (STAT3) induced by EBV infection and reduced molecules such as interleukin-6 (IL-6) and reactive oxidative species (ROS) known to be essential for the immortalization process. Moreover, we found that quercetin promoted autophagy and counteracted the accumulation of sequestosome1/p62 (SQSTM1/p62), ultimately leading to the prevention of B cell immortalization. These findings suggest that quercetin may have the potential to be used to counteract EBV-driven lymphomagenesis, especially if its stability is improved.

Quercetin Interrupts the Positive Feedback Loop Between STAT3 and IL-6, Promotes Autophagy, and Reduces ROS, Preventing EBV-Driven B Cell Immortalization

D'Orazi, Gabriella;
2019-01-01

Abstract

The oncogenic gammaherpesvirus Epstein-Barr virus (EBV) immortalizes in vitro B lymphocytes into lymphoblastoid cell lines (LCLs), a model that gives the opportunity to explore the molecular mechanisms driving viral tumorigenesis. In this study, we addressed the potential of quercetin, a widely distributed flavonoid displaying antioxidant, anti-inflammatory, and anti-cancer properties, in preventing EBV-driven B cell immortalization. The results obtained indicated that quercetin inhibited thectivation of signal transducer and activator of transcription 3 (STAT3) induced by EBV infection and reduced molecules such as interleukin-6 (IL-6) and reactive oxidative species (ROS) known to be essential for the immortalization process. Moreover, we found that quercetin promoted autophagy and counteracted the accumulation of sequestosome1/p62 (SQSTM1/p62), ultimately leading to the prevention of B cell immortalization. These findings suggest that quercetin may have the potential to be used to counteract EBV-driven lymphomagenesis, especially if its stability is improved.
2019
Inglese
ELETTRONICO
9
9
482
11
Epstein–Barr virus (EBV), STAT3; IL-6; LCLs; ROS; SQSTM1/p62; autophagy; quercetin
https://www.mdpi.com/2218-273X/9/9/482
no
9
info:eu-repo/semantics/article
262
Granato, Marisa; Gilardini Montani, Maria Saveria; Zompetta, Claudia; Santarelli, Roberta; Gonnella, Roberta; Romeo, Maria Anele; D'Orazi, Gabriella; ...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
open
File in questo prodotto:
File Dimensione Formato  
biomolecules-09-00482-v2.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/710357
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 25
social impact