Traditional inequality measures fail to capture the geographical distribution of income. The failure to consider such distribution implies that, holding income constant, different spatial patterns provide the same inequality measure. This property is referred to as anonymity and presents an interesting question about the relationship between inequality and space. Particularly, spatial dependence could play an important role in shaping the geographical distribution of income and could be usefully incorporated into inequality measures. Following this idea, this paper introduces a new measure that facilitates the assessment of the relative contribution of spatial patterns to overall inequality. The proposed index is based on the Gini correlation measure and accounts for both inequality and spatial autocorrelation. Unlike most of the spatially based income inequality measures proposed in the literature, our index introduces regional importance weighting in the analysis, thereby differentiating the regional contributions to overall inequality. Starting with the proposed measure, a spatial decomposition of the Gini index of inequality for weighted data is also derived. This decomposition permits the identification of the actual extent of regional disparities and the understanding of the interdependences among regional economies. The proposed measure is illustrated by an empirical analysis focused on Italian provinces.

Measuring the Spatial Dimension of Regional Inequality: An Approach Based on the Gini Correlation Measure

Panzera D
;
Postiglione P
2020

Abstract

Traditional inequality measures fail to capture the geographical distribution of income. The failure to consider such distribution implies that, holding income constant, different spatial patterns provide the same inequality measure. This property is referred to as anonymity and presents an interesting question about the relationship between inequality and space. Particularly, spatial dependence could play an important role in shaping the geographical distribution of income and could be usefully incorporated into inequality measures. Following this idea, this paper introduces a new measure that facilitates the assessment of the relative contribution of spatial patterns to overall inequality. The proposed index is based on the Gini correlation measure and accounts for both inequality and spatial autocorrelation. Unlike most of the spatially based income inequality measures proposed in the literature, our index introduces regional importance weighting in the analysis, thereby differentiating the regional contributions to overall inequality. Starting with the proposed measure, a spatial decomposition of the Gini index of inequality for weighted data is also derived. This decomposition permits the identification of the actual extent of regional disparities and the understanding of the interdependences among regional economies. The proposed measure is illustrated by an empirical analysis focused on Italian provinces.
File in questo prodotto:
File Dimensione Formato  
-Panzera, Postiglione (2020)-SIR.pdf

accesso aperto

Descrizione: Original Research
Tipologia: PDF editoriale
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/710762
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact